[スポンサーリンク]

化学者のつぶやき

変異体鏡像Rasタンパクの化学全合成

[スポンサーリンク]

スローンケタリング癌研究所・Samuel J. Danishefskyら共同研究グループは、Dーアミノ酸のみで構成された変異Rasの全合成に成功した。Rasはヒトのガンの30%に関わるとされるタンパク質であるが、これを標的とする薬剤開発は現在でもさほど進んでいない。全合成された鏡像体Rasタンパク質は、ペプチド阻害剤探索法(mirror-image yeast surface display)に活用できる。

“Total Chemical Synthesis and Folding of All-l and All-d Variants of Oncogenic KRas(G12V)”
Levinson, A. M.; McGee, J. H.*; Roberts, A. G.*; Creech, G. S.; Wang, T.; Peterson, M. T.; Hendrickson, R. C.; Verdine, G. L.; Danishefsky, S. J.* J. Am. Chem. Soc. 2017, 139, 7632–7639. DOI: 10.1021/jacs.7b02988(アイキャッチ画像は本論文より引用・改変)

問題設定と解決した点

 Rasタンパク質は、GTP結合タンパク質の一種で、細胞のガン化に関わるひとつとして知られている[1]。通常、RasはGDPと結合した不活性な状態で存在するが、これがGTPと交換されることで活性化し、転写や細胞増殖に関わる多くのシグナル経路を活性化するようになる。その後GTPase活性化蛋白質(GAP)と結合しGTPをGDPに加水分解することで再び不活性型に戻る。

図はこちらのサイトより引用

 しかしGTPには結合するがそれを加水分解できない変異Rasが生じると、下流のシグナル経路が常時活性化され続ける。これが細胞のガン化を引き起こす。そのため変異したRas(Gly12がValへと変異したG12V体が代表的であり、KRasと呼ばれる)の働きを抑制する抗がん剤の研究が行われてきた。しかしながら、Rasは疎水性の結合ポケットを持たず、GTP結合部位を狙っても多量の体内GDP・GTPとの競合に薬剤が負けてしまう問題があり、Rasをターゲットとした低分子創薬は長年にわたり困難であった。

 そこで近年では、下流に位置するキナーゼとRasのタンパク間相互作用を阻害するための研究が行われてきた。その探索法の一つが、Yeast Surface Display(YSD)[2]である。この手法では酵母表面にペプチドを発現させてライブラリとし、標的と結合しうる酵母(ペプチド)のみを集め増幅させ、結合能の高いペプチドを同定する。

YSDの概念図。この図では釣り上げにmagnetic beadsを用いているが、今回の論文ではビオチンを用いている。

 D-アミノ酸から構成されるD-ペプチド医薬は、ペプチダーゼ耐性が高く体内安定性に優れている。しかしながら、酵母表面にD-ペプチドは発現できないため、通常の方法ではYSD法でのD-ペプチド同定は不可能である。

 そこで著者らは、酵母表面L-ペプチドとの相互作用を狙ったmirror-image display screening[3]を実施すべく、すべてがD-アミノ酸で構成された鏡像体KRasの全合成を行った。

技術や手法のキモ

 KRasは166残基もの長さを持つペプチドである。そのため複数のフラグメントに分割し、それぞれ固相合成したものをNCLによって繋げることを計画した。KRasは3ヶ所にシステインを持つ(Cys51, Cys80, Cys118)ため、ここで繋げるのが基本戦略となる。またC末端には釣り上げのためビオチンタグを付けている。

図は論文より引用

 固相上でペプチド鎖を伸ばしていくと、5~20個程度繋げたところでペプチド鎖同士が水素結合などを起こして凝集し、反応しなくなる可能性がある。

 これを解決しうる工夫として、セリン・スレオニンをアセタール保護してプロリン様構造としたジペプチドを組み込んで用いている(プロリン骨格が含まれると凝集しにくいため)。

また、高疎水性部のグリシンアミドにHmb基を導入し、アミドNHが水素結合しないようにしている(Hmbは90% TFAの酸条件で除去可能)。

[118-166]の49残基フラグメントについては固相合成のみでは収率が低いため、フラグメントをAla146の左右で分割し、NCLで連結して合成している(NCL後のシステインを脱硫してアラニンへと変換している)。Gly133のC末をチオ酸にしたのちイソニトリル活性化型カップリング[4]する別法も検討されている。

合成スキームは論文より引用

 

[1-50]と[51-79]のNCLにおいては、[51-79]のC末端もチオエステルであるが、[1-50]のC末が優先的に反応する。これは[1-50]C末端を脱離能が大きいアリールチオエステルとしていることが理由であり、Kinetic NCLと呼称している。

合成スキームは論文より引用

主張の有効性検証

①化学合成タンパクが生物合成タンパクと同じものであることの実証

 化学合成後フォールディングさせ、サイズ排除クロマトグラフィーで精製すると、生物合成によるrecombinantタンパクと同じ溶出時間を示した。また。CDスペクトルも同様であった(LとDで逆の波形になる)。タンパク質の吸光(A260/A280)も同様の結果を示した。

②KRasの鏡像異性体毎にL-ペプチド/D-ペプチドの相互作用傾向が反転することの実証

 KRasと結合して蛍光を発するmant-GppNHpを用い、蛍光強度からL-KRas、D-KRasそれぞれと相互作用するか否かを調べた。mant-GppNHpと結合させた状態でGppNHpと競合させると蛍光が減少していくが、225-44ミニタンパクと相互作用させるとmant-GppNHpの放出(蛍光減少)が遅くなることが知られている。

 このアッセイ系をL-KRasとD-KRasに対し適用したところ、L-KRasは生物合成のものと同様の挙動を示した。

 しかしD-KRasの場合はGppNHp と競合せず、GppNHpの光学異性体と競合して蛍光を減少させた。また、L-225-44 ミニタンパクを共存させても放出を抑制できず、D-225-44ミニタンパク共存下では蛍光減少が遅くなった。

 さらに、KRasに結合する225-11ミニタンパクについてもそれぞれall-D, all-Lのものを用意し、結合力を測定した。この結果、L-KRasとL-225-11、D-KRasとD-225-11が相互作用し、L-RasとD-225-11は相互作用しないことが分かった。

 このように結合特性はL/Dで綺麗に反転していることから、D-KRasと相互作用するL-ペプチドを見つけられれば、L-KRasと相互作用するD-ペプチドを見つけたことに相当する。

議論すべき点

  • mirror-image displayは1996年のScience[3a]が初出。これ以降、アルツハイマーやHIV薬の探索のために研究されているようだが、創薬標的となるタンパク質をすべてD体で全合成しなければならないことが欠点。今回のKRasは166残基でまだ合成可能なサイズだが、これ以上大きくなると厳しいか。そもそも化学合成後、ちゃんとfoldingするかどうかも懸念がある。
  • この方法で見つけられるのは全てD-アミノ酸からなるペプチドである。DL混合のものなどを見つけることは、当然ながら無理。
  • Dーアミノ酸は終止コドンに対応させれば1~2種程度は導入できるが、すべてをD体にするメリットはどれほどか?

次に読むべき論文は?

  • 本手法のlimitationのひとつは、標的タンパク質のD体アミノ酸での全合成である。現在ではどのくらいの大きさのタンパク質まで合成できるのか?を知る意味でも、タンパク質化学全合成に関する総説[5]などは参照価値がある。

参考文献

  1. Cox, A. D.; Fesik, S. W.; Kimmelman, A. C.; Luo, J.; Der, C. J. Nat. Rev. Drug Discov. 2014, 13, 828. doi:10.1038/nrd4389
  2. Gera, N.; Hussain, M.; Rao, B. M. Methods 2013, 60, 15. doi:10.1016/j.ymeth.2012.03.014
  3. (a) Schumacher, T. N. M.; Mayr, L. M.; Minor, D. L.; Milhollen, M. A.; Burgess, M. W.; Kim, P. S. Science 1996, 271, 1854. DOI: 10.1126/science.271.5257.1854 (b) Funkea,S. A.; Willbold, D. Mol. Biosyst. 2009, 5, 783. doi:10.1039/B904138A
  4. Roberts, A. G.; Johnston, E. V.; Shieh, J.-H.; Sondey, J. P.; Hendrickson, R. C.; Moore, M. A. S.; Danishefsky, S. J. J. Am. Chem. Soc. 2015, 137, 13167. DOI: 10.1021/jacs.5b08754
  5. Kent, S. B. Chem. Soc. Rev. 2009, 38, 338. doi:10.1039/B700141J

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. マイクロ波による事業創出やケミカルリサイクルについて/マイクロ波…
  2. 「重曹でお掃除」の化学(その2)
  3. 深海の美しい怪物、魚竜
  4. 【太陽HD】”世界一の技術”アルカリ現像…
  5. アルケンでCatellani反応: 長年解決されなかった副反応を…
  6. 糖鎖合成化学は芸術か?
  7. C–NおよびC–O求電子剤間の還元的クロスカップリング
  8. 肝はメチル基!? ロルカセリン

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アミンの新合成法
  2. ルーベン・マーティン Ruben Martin
  3. 第4回ICReDD国際シンポジウム開催のお知らせ
  4. 大学院生のつぶやき:UCEEネット、ご存知ですか?
  5. 世界初 ソフトワーム用自発光液 「ケミホタルペイント」が発売
  6. 新生HGS分子構造模型を試してみた
  7. 教科書を書き換えるか!?ヘリウムの化合物
  8. ヴェンキィ・ラマクリシュナン Venkatraman Ramakrishnan
  9. 中村 浩之 Hiroyuki NAKAMURA
  10. 第94回日本化学会付設展示会ケムステキャンペーン!Part III

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

注目情報

最新記事

材料開発を効率化する、マテリアルズ・インフォマティクス人材活用のポイントと進め方

開催日:2023/06/07 申し込みはこちら■開催概要近年、少子高齢化…

材料開発の変革をリードするスタートアップのデータサイエンティストとは?

開催日:2023/06/08  申し込みはこちら■開催概要MI-6はこの度シリーズAラウ…

世界で初めて有機半導体の”伝導帯バンド構造”の測定に成功!

第523回のスポットライトリサーチは、千葉大学 吉田研究室で博士課程を修了された佐藤 晴輝(さとう …

第3回「Matlantis User Conference」

株式会社Preferred Computational Chemistryは、7月21日(金)に第3…

第38回ケムステVシンポ「多様なキャリアに目を向ける:化学分野のAltac」を開催します!

本格的な夏はまだまだ先ですが、毎日かなり暖かくなってきました。皆様お変わりございませんでしょうか。…

フラノクマリン -グレープフルーツジュースと薬の飲み合わせ-

2023年2月に実施された第108回薬剤師国家試験において、スウィーティーという単語…

構造の多様性で変幻自在な色調変化を示す分子を開発!

第522回のスポットライトリサーチは、北海道大学 有機化学第一研究室(鈴木孝紀 研究室)で博士課程を…

マテリアルズ・インフォマティクス適用のためのテーマ検討の進め方とは?

開催日:2023/05/31 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

リングサイズで性質が変わる蛍光性芳香族ナノベルトの合成に成功

第521回のスポットライトリサーチは、名古屋大学大学院理学研究科理学専攻 物質・生命化学領域 有機化…

材料開発の変革をリードするスタートアップのプロダクト開発ポジションとは?

開催日:2023/06/01 申し込みはこちら■開催概要MI-6はこの度シリーズAラウン…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP