[スポンサーリンク]

化学者のつぶやき

変異体鏡像Rasタンパクの化学全合成

[スポンサーリンク]

スローンケタリング癌研究所・Samuel J. Danishefskyら共同研究グループは、Dーアミノ酸のみで構成された変異Rasの全合成に成功した。Rasはヒトのガンの30%に関わるとされるタンパク質であるが、これを標的とする薬剤開発は現在でもさほど進んでいない。全合成された鏡像体Rasタンパク質は、ペプチド阻害剤探索法(mirror-image yeast surface display)に活用できる。

“Total Chemical Synthesis and Folding of All-l and All-d Variants of Oncogenic KRas(G12V)”
Levinson, A. M.; McGee, J. H.*; Roberts, A. G.*; Creech, G. S.; Wang, T.; Peterson, M. T.; Hendrickson, R. C.; Verdine, G. L.; Danishefsky, S. J.* J. Am. Chem. Soc. 2017, 139, 7632–7639. DOI: 10.1021/jacs.7b02988(アイキャッチ画像は本論文より引用・改変)

問題設定と解決した点

 Rasタンパク質は、GTP結合タンパク質の一種で、細胞のガン化に関わるひとつとして知られている[1]。通常、RasはGDPと結合した不活性な状態で存在するが、これがGTPと交換されることで活性化し、転写や細胞増殖に関わる多くのシグナル経路を活性化するようになる。その後GTPase活性化蛋白質(GAP)と結合しGTPをGDPに加水分解することで再び不活性型に戻る。

図はこちらのサイトより引用

 しかしGTPには結合するがそれを加水分解できない変異Rasが生じると、下流のシグナル経路が常時活性化され続ける。これが細胞のガン化を引き起こす。そのため変異したRas(Gly12がValへと変異したG12V体が代表的であり、KRasと呼ばれる)の働きを抑制する抗がん剤の研究が行われてきた。しかしながら、Rasは疎水性の結合ポケットを持たず、GTP結合部位を狙っても多量の体内GDP・GTPとの競合に薬剤が負けてしまう問題があり、Rasをターゲットとした低分子創薬は長年にわたり困難であった。

 そこで近年では、下流に位置するキナーゼとRasのタンパク間相互作用を阻害するための研究が行われてきた。その探索法の一つが、Yeast Surface Display(YSD)[2]である。この手法では酵母表面にペプチドを発現させてライブラリとし、標的と結合しうる酵母(ペプチド)のみを集め増幅させ、結合能の高いペプチドを同定する。

YSDの概念図。この図では釣り上げにmagnetic beadsを用いているが、今回の論文ではビオチンを用いている。

 D-アミノ酸から構成されるD-ペプチド医薬は、ペプチダーゼ耐性が高く体内安定性に優れている。しかしながら、酵母表面にD-ペプチドは発現できないため、通常の方法ではYSD法でのD-ペプチド同定は不可能である。

 そこで著者らは、酵母表面L-ペプチドとの相互作用を狙ったmirror-image display screening[3]を実施すべく、すべてがD-アミノ酸で構成された鏡像体KRasの全合成を行った。

技術や手法のキモ

 KRasは166残基もの長さを持つペプチドである。そのため複数のフラグメントに分割し、それぞれ固相合成したものをNCLによって繋げることを計画した。KRasは3ヶ所にシステインを持つ(Cys51, Cys80, Cys118)ため、ここで繋げるのが基本戦略となる。またC末端には釣り上げのためビオチンタグを付けている。

図は論文より引用

 固相上でペプチド鎖を伸ばしていくと、5~20個程度繋げたところでペプチド鎖同士が水素結合などを起こして凝集し、反応しなくなる可能性がある。

 これを解決しうる工夫として、セリン・スレオニンをアセタール保護してプロリン様構造としたジペプチドを組み込んで用いている(プロリン骨格が含まれると凝集しにくいため)。

また、高疎水性部のグリシンアミドにHmb基を導入し、アミドNHが水素結合しないようにしている(Hmbは90% TFAの酸条件で除去可能)。

[118-166]の49残基フラグメントについては固相合成のみでは収率が低いため、フラグメントをAla146の左右で分割し、NCLで連結して合成している(NCL後のシステインを脱硫してアラニンへと変換している)。Gly133のC末をチオ酸にしたのちイソニトリル活性化型カップリング[4]する別法も検討されている。

合成スキームは論文より引用

 

[1-50]と[51-79]のNCLにおいては、[51-79]のC末端もチオエステルであるが、[1-50]のC末が優先的に反応する。これは[1-50]C末端を脱離能が大きいアリールチオエステルとしていることが理由であり、Kinetic NCLと呼称している。

合成スキームは論文より引用

主張の有効性検証

①化学合成タンパクが生物合成タンパクと同じものであることの実証

 化学合成後フォールディングさせ、サイズ排除クロマトグラフィーで精製すると、生物合成によるrecombinantタンパクと同じ溶出時間を示した。また。CDスペクトルも同様であった(LとDで逆の波形になる)。タンパク質の吸光(A260/A280)も同様の結果を示した。

②KRasの鏡像異性体毎にL-ペプチド/D-ペプチドの相互作用傾向が反転することの実証

 KRasと結合して蛍光を発するmant-GppNHpを用い、蛍光強度からL-KRas、D-KRasそれぞれと相互作用するか否かを調べた。mant-GppNHpと結合させた状態でGppNHpと競合させると蛍光が減少していくが、225-44ミニタンパクと相互作用させるとmant-GppNHpの放出(蛍光減少)が遅くなることが知られている。

 このアッセイ系をL-KRasとD-KRasに対し適用したところ、L-KRasは生物合成のものと同様の挙動を示した。

 しかしD-KRasの場合はGppNHp と競合せず、GppNHpの光学異性体と競合して蛍光を減少させた。また、L-225-44 ミニタンパクを共存させても放出を抑制できず、D-225-44ミニタンパク共存下では蛍光減少が遅くなった。

 さらに、KRasに結合する225-11ミニタンパクについてもそれぞれall-D, all-Lのものを用意し、結合力を測定した。この結果、L-KRasとL-225-11、D-KRasとD-225-11が相互作用し、L-RasとD-225-11は相互作用しないことが分かった。

 このように結合特性はL/Dで綺麗に反転していることから、D-KRasと相互作用するL-ペプチドを見つけられれば、L-KRasと相互作用するD-ペプチドを見つけたことに相当する。

議論すべき点

  • mirror-image displayは1996年のScience[3a]が初出。これ以降、アルツハイマーやHIV薬の探索のために研究されているようだが、創薬標的となるタンパク質をすべてD体で全合成しなければならないことが欠点。今回のKRasは166残基でまだ合成可能なサイズだが、これ以上大きくなると厳しいか。そもそも化学合成後、ちゃんとfoldingするかどうかも懸念がある。
  • この方法で見つけられるのは全てD-アミノ酸からなるペプチドである。DL混合のものなどを見つけることは、当然ながら無理。
  • Dーアミノ酸は終止コドンに対応させれば1~2種程度は導入できるが、すべてをD体にするメリットはどれほどか?

次に読むべき論文は?

  • 本手法のlimitationのひとつは、標的タンパク質のD体アミノ酸での全合成である。現在ではどのくらいの大きさのタンパク質まで合成できるのか?を知る意味でも、タンパク質化学全合成に関する総説[5]などは参照価値がある。

参考文献

  1. Cox, A. D.; Fesik, S. W.; Kimmelman, A. C.; Luo, J.; Der, C. J. Nat. Rev. Drug Discov. 2014, 13, 828. doi:10.1038/nrd4389
  2. Gera, N.; Hussain, M.; Rao, B. M. Methods 2013, 60, 15. doi:10.1016/j.ymeth.2012.03.014
  3. (a) Schumacher, T. N. M.; Mayr, L. M.; Minor, D. L.; Milhollen, M. A.; Burgess, M. W.; Kim, P. S. Science 1996, 271, 1854. DOI: 10.1126/science.271.5257.1854 (b) Funkea,S. A.; Willbold, D. Mol. Biosyst. 2009, 5, 783. doi:10.1039/B904138A
  4. Roberts, A. G.; Johnston, E. V.; Shieh, J.-H.; Sondey, J. P.; Hendrickson, R. C.; Moore, M. A. S.; Danishefsky, S. J. J. Am. Chem. Soc. 2015, 137, 13167. DOI: 10.1021/jacs.5b08754
  5. Kent, S. B. Chem. Soc. Rev. 2009, 38, 338. doi:10.1039/B700141J
Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 有機アジド(1):歴史と基本的な性質
  2. 安価な金属触媒でアルケンの高活性ヒドロシリル化を達成
  3. 近年の量子ドットディスプレイ業界の動向
  4. ハッピー・ハロウィーン・リアクション
  5. 第44回ケムステVシンポ「未来を切り拓く半導体材料科学の最前線」…
  6. マテリアルズ・インフォマティクスの基本とMI推進
  7. アミロイド線維を触媒に応用する
  8. 2018年ケムステ人気記事ランキング

注目情報

ピックアップ記事

  1. 四角い断面を持つナノチューブ合成に成功
  2. ヤマハ発動機、サプリメントメーカーなど向けにアスタキサンチンの原料を供給するビジネスを開始
  3. シュワルツ試薬 Schwartz’s Reagent
  4. エキノコックスにかかわる化学物質について
  5. 18万匹のトコジラミ大行進 ~誘因フェロモンを求めて①~
  6. 新しい太陽電池ーペロブスカイト太陽電池とは
  7. 世界初 ソフトワーム用自発光液 「ケミホタルペイント」が発売
  8. カネボウ化粧品、バラの香りの秘密解明 高級香水が身近に?
  9. 甲種危険物取扱者・合格体験記~読者の皆さん編
  10. 池田 富樹 Tomiki Ikeda

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年8月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

データ駆動型生成AIの限界に迫る!生成AIで信頼性の高い分子設計へ

第663回のスポットライトリサーチは、横浜市立大学大学院 生命医科学研究科(生命情報科学研究室)博士…

MDSのはなし 骨髄異形成症候群とそのお薬の開発状況 その2

Tshozoです。前回はMDSについての簡易な情報と歴史と原因を述べるだけで終わってしまったので…

水-有機溶媒の二液相間電子伝達により進行する人工光合成反応

第662回のスポットライトリサーチは、京都大学 大学院工学研究科 物質エネルギー化学専攻 阿部竜研究…

ケムステイブニングミキサー 2025 報告

3月26日から29日の日本化学会第105春季年会に参加されたみなさま、おつかれさまでした!運営に…

【テーマ別ショートウェビナー】今こそ変革の時!マイクロ波が拓く脱炭素時代のプロセス革新

■ウェビナー概要プロセスの脱炭素化及び効率化のキーテクノロジーである”マイクロ波…

予期せぬパラジウム移動を経る環化反応でベンゾヘテロールを作る

1,2-Pd移動を含む予期せぬ連続反応として進行することがわかり、高収率で生成物が得られた。 合…

【27卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

熱がダメなら光当てれば?Lugdunomycinの全合成

光化学を駆使した、天然物Lugdunomycinの全合成が報告された。紫外光照射による異性化でイソベ…

第59回有機反応若手の会

開催概要有機反応若手の会は、全国の有機化学を研究する大学院生を中心とした若手研究…

多環式分子を一挙に合成!新たなo-キノジメタン生成法の開発

第661回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)博士課程1…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP