[スポンサーリンク]

一般的な話題

陶磁器釉の構造入門-ケイ酸、アルカリ金属に注目-

[スポンサーリンク]

 

世の中に存在するほとんどの陶磁器の釉薬の組成はケイ酸が大部分を占めており、このケイ酸がネットワークを組んでいます。さて、釉薬の組成を表す一般式であるゼーゲル式は以下の通りです。軽めのゼーゲル式の説明はこの記事内にあります。

aR2O / bRO } xAl2O3ySiOただしa+b=1

 大抵の場合、y xに比べ数倍大きな値を取るように調合します。ケイ酸の方が全然多いということです。本記事ではとりあえずアルミニウムのことは置いておき、ケイ酸がどんな構造をとっているのか、Rすなわちアルカリ金属がどんな働きをするのかについてお話致します。私の落書き付きです。

ケイ酸ネットワーク

以下にケイ酸ネットワークの平面構造(落書き①)を示します。大きな白丸がSiで小さな赤丸がOです。(実際は三次元的にSiとOが繋がっていますが省略しています。)釉薬は基本的な構造はケイ酸のアモルファスなのです。一度1300℃に近い環境で焼成され、そこから冷却されていく過程でガラス転移温度を下回り、ガラスとなった状態ですね。Siに着目してやれば5員環、6員環、7員環…と、様々な構造をとっていることがわかります。ただしSiは三次元的に見てやれば、更に二つの酸素と手をつないで四面体構造をとっていますので、組成としてはSiO2です。

落書き① ケイ酸ネットワークの平面構造

 

アルカリ金属たちは?

釉薬にはカリウムKやナトリウムNaなどのアルカリ金属や、マグネシウムMgやカルシウムCaなどのアルカリ土類金属も含まれます。こいつらは釉薬中ではカチオンとしてケイ酸ネットワークの隙間に入り込みます。下に落書き②を示します。橙丸は金属カチオンを表しています。カチオンが入り込むと電気的な不安定さを解消するために、一部の酸素はSiと手をつながずに、酸素アニオンとなるやつがでてきます。こうしてネットワークに亀裂が生まれるのです。二酸化ケイ素の融点は1600℃以上にもなります。やきものは高くても1300℃程度で焼けて欲しいものです。アルカリ分たちは融点降下の効果があるってことです。

落書き② 隙間にカチオンが入り込んだもの

なお、一価のカチオンなのか二価なのか、あるいは第何周期なのか(イオン半径はどの程度か)という違いでも、釉薬自体の機械強度や融点も変わってきます。下に最後の落書き③を示します。ナトリウムイオンよりイオン半径の大きいカリウムイオンのほうがよりケイ酸ネットワークを押し広げ、釉薬を’弱く’させそうなことが想像できますね。

落書き③

Na+は第三周期でMg2+も同じ第三周期ですから、後者の方が電荷密度が大きく、よりケイ酸構造を引き締めたりするわけですよ。同じ周期だとそういう違いがあったりします。そういうことをなんとなく考えながらNa多めの長石(ソーダ長石なんて陶芸家は呼びます)にするか、K多めの長石(カリ長石)にするか、あるいはその中間をとるか、なんてことを決めて釉薬作りに励むのです。

ちなみに、Siのようにアモルファスに単体でなることができるようなものをglass network formerと呼んだりすることがあります。ナトリウムやカリウムはそれ単体としてアモルファス固体になるには厳しいですからガラスのネットワークの隙間に入り込んだりしています。これらは、glass network modifierと呼ばれたりします。

最後に

今回はこの辺でお終いです。陶磁器をご使用になる前に、そうか!隙間に軽い金属のカチオンが隠れているのか!って思いながら眺めてやってください。

参考文献

  • 高嶋廣夫著,’陶磁器釉の科学’,株式会社内田老鶴圃(1994).

関連書籍

[amazonjs asin=”4416517041″ locale=”JP” title=”陶芸 銅・マンガン・クロムを使った装飾技法: 金属顔料で新しい色彩表現に挑む”] [amazonjs asin=”4526053104″ locale=”JP” title=”トコトンやさしいガラスの本 (B&Tブックス―今日からモノ知りシリーズ)”]

SASAKI

投稿者の記事一覧

我輩は応用化学科の学部生である。専門はまだない。(とか言ってたらラボは化学工学系に決まりました。)将来の夢が陶芸家なのか研究者なのかわかんなくなっている迷い猫です。

関連記事

  1. 有機合成化学協会誌2019年7月号:ジアステレオ選択的Joull…
  2. いま企業がアカデミア出身者に期待していること
  3. 階段状分子の作り方
  4. 褐色の要因となる巨大な光合成膜タンパク質複合体の立体構造の解明
  5. 名もなきジテルペノイドの初の全合成が導いた構造訂正
  6. ヒト胚研究、ついに未知領域へ
  7. 固有のキラリティーを生むカリックス[4]アレーン合成法の開発
  8. Pallambins A-Dの不斉全合成

注目情報

ピックアップ記事

  1. カチオン性三核Pd触媒でC–I結合選択的にカップリングする
  2. バルツ・シーマン反応 Balz-Schiemann Reaction
  3. 化学のあるある誤変換
  4. 可視光エネルギーを使って単純アルケンを有用分子に変換するハイブリッド触媒系の開発
  5. 第一回 人工分子マシンの合成に挑む-David Leigh教授-
  6. ティフェノー・デミヤノフ転位 Tiffeneau-Demjanov Rearrangement
  7. 連鎖と逐次重合が同時に起こる?
  8. 徹底的に電子不足化した有機π共役分子 ~高機能n型有機半導体材料の創製を目指して~
  9. 光の色で反応性が変わる”波長選択的”な有機光触媒
  10. デルゴシチニブ(Delgocitinib)のはなし 日本発の非ステロイド系消炎外用薬について

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年8月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

第54回ケムステVシンポ「構造から機能へ:ケイ素系元素ブロック材料研究の最前線」を開催します!

今年も暑くなってきましたね! さて、本記事は、第54回ケムステVシンポジウムの開催告知です! 暑さに…

有機合成化学協会誌2025年7月号:窒素ドープカーボン担持金属触媒・キュバン/クネアン・電解合成・オクタフルオロシクロペンテン・Mytilipin C

有機合成化学協会が発行する有機合成化学協会誌、2025年7月号がオンラインで公開されています。…

ルイス酸性を持つアニオン!?遷移金属触媒の新たなカウンターアニオン”BBcat”

第667回のスポットライトリサーチは、東京大学大学院工学系研究科 野崎研究室 の萬代遼さんにお願いし…

解毒薬のはなし その1 イントロダクション

Tshozoです。最近、配偶者に対し市販されている自動車用化学品を長期に飲ませて半死半生の目に合…

ビル・モランディ Bill Morandi

ビル・モランディ (Bill Morandi、1983年XX月XX日–)はスイスの有機化学者である。…

《マイナビ主催》第2弾!研究者向け研究シーズの事業化を学べるプログラムの応募を受付中 ★交通費・宿泊費補助あり

2025年10月にマイナビ主催で、研究シーズの事業化を学べるプログラムを開催いたします!将来…

化粧品用マイクロプラスチックビーズ代替素材の市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、化粧品…

分子の形がもたらす”柔軟性”を利用した分子配列制御

第666回のスポットライトリサーチは、東北大学多元物質科学研究所(芥川研究室)笠原遥太郎 助教にお願…

柔粘性結晶相の特異な分子運動が、多段階の電気応答を実現する!

第665回のスポットライトリサーチは、東北大学大学院工学研究科(芥川研究室)修士2年の小野寺 希望 …

マーク・レビン Mark D. Levin

マーク D. レビン (Mark D. Levin、–年10月14日)は米国の有機化学者である。米国…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP