[スポンサーリンク]

一般的な話題

次世代の放射光施設で何が出来るでしょうか?

お医者さんにいくと、X線を使って僕らは自分の体の中の情報を知ることができます。

化学や物理の実験室にいくと、X線を使って僕らは分子や原子の情報を知ることができます。

体の調子が悪い時に、何が原因で知ることが重要なように、なにか新しいものを発見した時に、どのようなメカニズムでその事象が起こっているかを知ることはとても重要な知見です。

X線や電子線は研究者にとっては割と身近な存在で、ある程度の大きさの研究所ではそれらを使った装置はとてもよく使われています。

 

ただしそんなX線や電子線ですが、世の中にはとっても”偉い”X線や電子線があります。それを使うと、より詳細に、より正確に、より多彩な条件でいろいろな事がわかるようになります。

その“偉い” X線や電子線を創りだすのが、放射光施設、シンクロトロンです。

 

“偉い”X線とは

ここで偉いというのは、つまり“研究に有用な”という意味です。実験をするには“真っ直ぐで” “強い”X線が欲しいです。

このようなX線のレシピは相対論的効果によって作られます(化学者にはムズカシイ)。電荷粒子が光速に近いくらいの速度で円運動していると、X線などの電磁波が回されている接線方向に飛び出してきます。

このようにして作られたX線を使うと、光の指向性が単一的輝度が強いX線が作られます。

このような装置の事を“シンクロトロン”と言います。

 

しかし、このような施設は容易に作れるものではありません。お金もかかります。壮観とも言えるほどの大きな装置で、世界でも有数です。

イメージ的にはサッカー場くらいの大きさの装置と考えていただければいいと思います。

 

日本、世界のシンクロトロン装置

spring jpg

Spring 8の全体図 (google imageより)

 

日本のシンクロトロン施設として有名なものは兵庫県播磨にあるSpring-8とつくばにある高エネ研(高エネルギー加速器研究機構)です。これらの施設は国内の多くの研究者に利用され、化学の発展に大きく寄与しています。

化学の実験で身近な物から挙げますと、X線の散乱をみて、結晶の構造を調べるX線構造解析やX線の吸収をみてその分子軌道を調べるX線吸収スペクトルなどに利用されています。

ちなみに世界最大のシンクロトロンはスイスにあるLHC(Large Hadron Collider)というもので、そこでしている研究で耳目を引きやすいものとしてはブラックホールが作れるようになるとか、ヒッグス粒子とか、化学者にとってはムズカシイ、少し異次元の研究もしています。そのシンクロトロンの大きさは円周27キロメートルと圧倒的に世界最大。

アメリカではAPS( Advanced Photon Source )や化学者にとってはコーネル大学やカルフォルニア大学バークレー校にほど近いCHESSやBevatronが有名です。

 

 

時代は第3世代から第4世代へ

そのようなシンクロトロンですが、やはり時代を重ねて進歩してきています。

1945年にエドウィンマクミランによって初めてのシンクロトロンが開発されて以降、様々な進化がなされています。

例えばSpring8で使われているのは第3世代と呼ばれるシステムです。加速電子を上手く運転させることにより、強力な光を取り出しています。これで得られる光の輝度、ラボで使われるX線装置のおよそ10の10乗!10時間かかるX線の測定がシンクロトロンを使うと1秒未満で出来るということになります。逆に言うとシンクロトロンで10分かかる測定は普通のラボでは1000年くらいかかるということです。

 

現在、シンクロトロンでつくられる電子ビームを、さらに加速させ、アンジュレーターに通過させることにより、レーザー的な単一波長的でさらにより輝度の強いX線を得るシステムが開発されています。これを第4世代型のシンクロトロンと呼びます。

このようにして得られた強い光を得られると、小さいスケールのみで得られる特殊な反応を得られることはもちろん、将来的には短い時間でおこる反応機構を一歩一歩追うことが出来るようになるかもしれません。

 

近い将来、化学という概念が変わるような発見や、当然のように信じられていた反応機構があっという形で覆されるかもしれません。

 

いやぁ、凄いっすよねぇ。

 

関連書籍

関連記事

  1. 銀イオンクロマトグラフィー
  2. 2008年ノーベル化学賞『緑色蛍光タンパクの発見と応用』
  3. Dead Endを回避せよ!「全合成・極限からの一手」⑤
  4. SciFinder Future Leaders in Chem…
  5. 2008年イグノーベル賞決定!
  6. Nature Chemistry:Research Highli…
  7. ニッケル錯体触媒の電子構造を可視化
  8. 化学者が麻薬を合成する?:Breaking Bad

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. イオン性置換基を有するホスホール化合物の発光特性
  2. トリフルオロ酢酸パラジウム(II) : Trifluoroacetic Acid Palladium(II) Salt
  3. Akzonobelとはどんな会社? 
  4. 国際化学五輪、日本代表に新高校3年生4人決定/化学グランプリ2017応募始まる
  5. ネッド・シーマン Nadrian C. Seeman
  6. 原子量に捧げる詩
  7. 投票!2014年ノーベル化学賞は誰の手に??
  8. 不斉触媒 Asymmetric Catalysis
  9. 置き去りのアルドール、launch!
  10. モーリス・ブルックハート Maurice S. Brookhart

関連商品

注目情報

注目情報

最新記事

出光・昭和シェル、統合を発表

石油元売り2位の出光興産と4位の昭和シェル石油は10日、2019年4月に経営統合すると正式に発表した…

天然物の全合成研究ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

「アジア発メジャー」狙う大陽日酸、欧州市場に参入

大陽日酸は北米に次ぐ成長が見込める欧州市場に参入を果たす。同業の米プラクスエアが欧州で展開する産業ガ…

典型元素触媒による水素を還元剤とする第一級アミンの還元的アルキル化

第149回のスポットライトリサーチは、大阪大学大学院工学研究科 博士後期課程3年の木下 拓也 (きの…

有機合成化学協会誌7月号:ランドリン全合成・分子間interrupted Pummerer反応・高共役拡張ポルフィリノイド・イナミド・含フッ素ビニルスルホニウム塩・ベンゾクロメン

化学協会が発行する有機合成化学協会誌、2018年7月号がオンライン公開されました。今月号のキ…

ウィリアム・ロウシュ William R. Roush

ウィリアム・R・ロウシュ(William R. Roush、1952年2月20日(Chula Vis…

Chem-Station Twitter

PAGE TOP