[スポンサーリンク]

一般的な話題

次世代の放射光施設で何が出来るでしょうか?

[スポンサーリンク]

お医者さんにいくと、X線を使って僕らは自分の体の中の情報を知ることができます。

化学や物理の実験室にいくと、X線を使って僕らは分子や原子の情報を知ることができます。

体の調子が悪い時に、何が原因で知ることが重要なように、なにか新しいものを発見した時に、どのようなメカニズムでその事象が起こっているかを知ることはとても重要な知見です。

X線や電子線は研究者にとっては割と身近な存在で、ある程度の大きさの研究所ではそれらを使った装置はとてもよく使われています。

 

ただしそんなX線や電子線ですが、世の中にはとっても”偉い”X線や電子線があります。それを使うと、より詳細に、より正確に、より多彩な条件でいろいろな事がわかるようになります。

その“偉い” X線や電子線を創りだすのが、放射光施設、シンクロトロンです。

 

“偉い”X線とは

ここで偉いというのは、つまり“研究に有用な”という意味です。実験をするには“真っ直ぐで” “強い”X線が欲しいです。

このようなX線のレシピは相対論的効果によって作られます(化学者にはムズカシイ)。電荷粒子が光速に近いくらいの速度で円運動していると、X線などの電磁波が回されている接線方向に飛び出してきます。

このようにして作られたX線を使うと、光の指向性が単一的輝度が強いX線が作られます。

このような装置の事を“シンクロトロン”と言います。

 

しかし、このような施設は容易に作れるものではありません。お金もかかります。壮観とも言えるほどの大きな装置で、世界でも有数です。

イメージ的にはサッカー場くらいの大きさの装置と考えていただければいいと思います。

 

日本、世界のシンクロトロン装置

spring jpg

Spring 8の全体図 (google imageより)

 

日本のシンクロトロン施設として有名なものは兵庫県播磨にあるSpring-8とつくばにある高エネ研(高エネルギー加速器研究機構)です。これらの施設は国内の多くの研究者に利用され、化学の発展に大きく寄与しています。

化学の実験で身近な物から挙げますと、X線の散乱をみて、結晶の構造を調べるX線構造解析やX線の吸収をみてその分子軌道を調べるX線吸収スペクトルなどに利用されています。

ちなみに世界最大のシンクロトロンはスイスにあるLHC(Large Hadron Collider)というもので、そこでしている研究で耳目を引きやすいものとしてはブラックホールが作れるようになるとか、ヒッグス粒子とか、化学者にとってはムズカシイ、少し異次元の研究もしています。そのシンクロトロンの大きさは円周27キロメートルと圧倒的に世界最大。

アメリカではAPS( Advanced Photon Source )や化学者にとってはコーネル大学やカルフォルニア大学バークレー校にほど近いCHESSやBevatronが有名です。

 

 

時代は第3世代から第4世代へ

そのようなシンクロトロンですが、やはり時代を重ねて進歩してきています。

1945年にエドウィンマクミランによって初めてのシンクロトロンが開発されて以降、様々な進化がなされています。

例えばSpring8で使われているのは第3世代と呼ばれるシステムです。加速電子を上手く運転させることにより、強力な光を取り出しています。これで得られる光の輝度、ラボで使われるX線装置のおよそ10の10乗!10時間かかるX線の測定がシンクロトロンを使うと1秒未満で出来るということになります。逆に言うとシンクロトロンで10分かかる測定は普通のラボでは1000年くらいかかるということです。

 

現在、シンクロトロンでつくられる電子ビームを、さらに加速させ、アンジュレーターに通過させることにより、レーザー的な単一波長的でさらにより輝度の強いX線を得るシステムが開発されています。これを第4世代型のシンクロトロンと呼びます。

このようにして得られた強い光を得られると、小さいスケールのみで得られる特殊な反応を得られることはもちろん、将来的には短い時間でおこる反応機構を一歩一歩追うことが出来るようになるかもしれません。

 

近い将来、化学という概念が変わるような発見や、当然のように信じられていた反応機構があっという形で覆されるかもしれません。

 

いやぁ、凄いっすよねぇ。

 

関連書籍

やすたか

投稿者の記事一覧

米国で博士課程学生

関連記事

  1. 化学の力で迷路を解く!
  2. 創薬・医療分野セミナー受講者募集(Blockbuster TOK…
  3. 磁力で生体触媒反応を制御する
  4. アメリカで Ph.D. を取る –結果発表ーッの巻–
  5. 化学者のためのエレクトロニクス入門⑤ ~ディスプレイ分野などで活…
  6. 海外のインターンに参加してみよう
  7. ちっちゃい異性を好む不思議な生物の愛を仲立ちするフェロモン
  8. 硫黄配位子に安定化されたカルボンの合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第五回 化学の力で生物システムを制御ー浜地格教授
  2. 炭素原子のまわりにベンゼン環をはためかせる
  3. 工業製品コストはどのように決まる?
  4. 芳香環メタ位を触媒のチカラで狙い撃ち
  5. DAST類縁体
  6. サンギ、バイオマス由来のエタノールを原料にガソリン代替燃料
  7. 市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナノグラフェンの多様性指向型合成が可能に〜
  8. ウォルター・コーン Walter Kohn
  9. リチャード・ラーナー Richard Lerner
  10. 「元素戦略プロジェクト」に関する研究開発課題の募集について

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年3月
« 2月   4月 »
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

抗リーシュマニア活性を有するセスキテルペンShagene AおよびBの全合成研究

第362回のスポットライトリサーチは、京都大学大学院農学研究科(入江研究室)・八木田凌太郎さんにお願…

マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方とは?

見逃し配信のお申込みはこちら■概要2021年10月13日に開催されたウェブセミナー「マテ…

第3の生命鎖、糖鎖の意味を解明する!【ケムステ×Hey!Labo 糖化学ノックインインタビュー③】

2021年度科学研究費助成事業 学術変革領域研究(B)に採択された『糖鎖ケミカルノックインが拓く膜動…

腎細胞がん治療の新薬ベルツチファン製造プロセスの開発

2021年夏に米国 FDA はベルツチファン (belzutifan, WeliregTM) という…

マテリアルズ・インフォマティクスの基本とMI推進

見逃し配信視聴申込はこちら■概要2021年9月7日に開催されたウェブセミナー「マテリアル…

【四国化成工業】新卒採用情報(2023卒)

◆求める人財像:『使命感にあふれ、自ら考え挑戦する人財』私たちが社員に求めるのは、「独創力」…

四国化成工業ってどんな会社?

私たち四国化成工業株式会社は、企業理念「独創力」のもと「有機合成技術」を武器に「これまでになかった材…

ポンコツ博士の海外奮闘録 外伝② 〜J-1 VISA取得編〜

ポンコツシリーズ番外編 その2 J-1 VISA取得までの余談と最近日本で問題になった事件を経験した…

結合をアリーヴェデルチ! Agarozizanol Bの全合成

セスキテルペンAgarozizanol Bの全合成が初めて達成された。光照射下で進行するカスケード反…

有機合成化学協会誌2022年1月号:無保護ケチミン・高周期典型金属・フラビン触媒・機能性ペプチド・人工核酸・脂質様材料

有機合成化学協会が発行する有機合成化学協会誌、2022年1月号がオンライン公開されました。本…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP