[スポンサーリンク]

一般的な話題

次世代の放射光施設で何が出来るでしょうか?

[スポンサーリンク]

お医者さんにいくと、X線を使って僕らは自分の体の中の情報を知ることができます。

化学や物理の実験室にいくと、X線を使って僕らは分子や原子の情報を知ることができます。

体の調子が悪い時に、何が原因で知ることが重要なように、なにか新しいものを発見した時に、どのようなメカニズムでその事象が起こっているかを知ることはとても重要な知見です。

X線や電子線は研究者にとっては割と身近な存在で、ある程度の大きさの研究所ではそれらを使った装置はとてもよく使われています。

 

ただしそんなX線や電子線ですが、世の中にはとっても”偉い”X線や電子線があります。それを使うと、より詳細に、より正確に、より多彩な条件でいろいろな事がわかるようになります。

その“偉い” X線や電子線を創りだすのが、放射光施設、シンクロトロンです。

 

“偉い”X線とは

ここで偉いというのは、つまり“研究に有用な”という意味です。実験をするには“真っ直ぐで” “強い”X線が欲しいです。

このようなX線のレシピは相対論的効果によって作られます(化学者にはムズカシイ)。電荷粒子が光速に近いくらいの速度で円運動していると、X線などの電磁波が回されている接線方向に飛び出してきます。

このようにして作られたX線を使うと、光の指向性が単一的輝度が強いX線が作られます。

このような装置の事を“シンクロトロン”と言います。

 

しかし、このような施設は容易に作れるものではありません。お金もかかります。壮観とも言えるほどの大きな装置で、世界でも有数です。

イメージ的にはサッカー場くらいの大きさの装置と考えていただければいいと思います。

 

日本、世界のシンクロトロン装置

spring jpg

Spring 8の全体図 (google imageより)

 

日本のシンクロトロン施設として有名なものは兵庫県播磨にあるSpring-8とつくばにある高エネ研(高エネルギー加速器研究機構)です。これらの施設は国内の多くの研究者に利用され、化学の発展に大きく寄与しています。

化学の実験で身近な物から挙げますと、X線の散乱をみて、結晶の構造を調べるX線構造解析やX線の吸収をみてその分子軌道を調べるX線吸収スペクトルなどに利用されています。

ちなみに世界最大のシンクロトロンはスイスにあるLHC(Large Hadron Collider)というもので、そこでしている研究で耳目を引きやすいものとしてはブラックホールが作れるようになるとか、ヒッグス粒子とか、化学者にとってはムズカシイ、少し異次元の研究もしています。そのシンクロトロンの大きさは円周27キロメートルと圧倒的に世界最大。

アメリカではAPS( Advanced Photon Source )や化学者にとってはコーネル大学やカルフォルニア大学バークレー校にほど近いCHESSやBevatronが有名です。

 

 

時代は第3世代から第4世代へ

そのようなシンクロトロンですが、やはり時代を重ねて進歩してきています。

1945年にエドウィンマクミランによって初めてのシンクロトロンが開発されて以降、様々な進化がなされています。

例えばSpring8で使われているのは第3世代と呼ばれるシステムです。加速電子を上手く運転させることにより、強力な光を取り出しています。これで得られる光の輝度、ラボで使われるX線装置のおよそ10の10乗!10時間かかるX線の測定がシンクロトロンを使うと1秒未満で出来るということになります。逆に言うとシンクロトロンで10分かかる測定は普通のラボでは1000年くらいかかるということです。

 

現在、シンクロトロンでつくられる電子ビームを、さらに加速させ、アンジュレーターに通過させることにより、レーザー的な単一波長的でさらにより輝度の強いX線を得るシステムが開発されています。これを第4世代型のシンクロトロンと呼びます。

このようにして得られた強い光を得られると、小さいスケールのみで得られる特殊な反応を得られることはもちろん、将来的には短い時間でおこる反応機構を一歩一歩追うことが出来るようになるかもしれません。

 

近い将来、化学という概念が変わるような発見や、当然のように信じられていた反応機構があっという形で覆されるかもしれません。

 

いやぁ、凄いっすよねぇ。

 

関連書籍

やすたか

投稿者の記事一覧

米国で博士課程学生

関連記事

  1. 「ドイツ大学論」 ~近代大学の根本思想とは~
  2. 電子雲三次元ガラス彫刻NEBULAが凄い!
  3. 天然階段状分子の人工合成に成功
  4. ナノ孔に吸い込まれていく分子の様子をスナップショット撮影!
  5. 「海外PIとして引率する大気化学研究室」ーカリフォルニア大学アー…
  6. 研究助成金&海外留学補助金募集:公益財団法人アステラス…
  7. 文献管理のキラーアプリとなるか? 「ReadCube」
  8. (–)-Daphenezomine AとBの全合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ゲオスミン(geosmin)
  2. 有機合成化学協会誌2021年8月号:ナノチューブカプセル・ナノグラフェン・芳香環C-H変換・メタルフリー複素環合成・スピロシクロプロパン
  3. 有機合成化学協会誌2017年8月号:C-H活性化・アリール化重合・オキシインドール・遠隔不斉誘導・ビアリールカップリング
  4. Arena/エーザイ 抗肥満薬ロルカセリンがFDA承認取得
  5. レア RARE 希少金属の知っておきたい16話
  6. 100年前のノーベル化学賞ーリヒャルト・ヴィルシュテッター
  7. 国連番号(UN番号)
  8. 高知和夫 J. K. Kochi
  9. 松原 亮介 Ryosuke Matsubara
  10. 「細胞専用の非水溶媒」という概念を構築

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年3月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

スクショの友 Snagit

スクリーンショット(スクショ)は、手軽に画像や図をコピーすることができ、資料作成などにおいて便利な機…

第28回Vシンポ「電子顕微鏡で分子を見る!」を開催します!

こんにちは、今回第28回Vシンポの運営&司会を務めさせていただくMacyです、よろしくお願い…

量子アルゴリズム国際ハッカソンQPARC Challengeで、で京都大学の学生チームが優勝!!

そこかしこで「量子コンピュータ」という言葉を聞くようになった昨今ですが、実際に何がどこまでできるのか…

Nature主催の動画コンペ「Science in Shorts」に応募してみました

以前のケムステ記事で、Springer Nature社が独・メルク社と共同で、動画コンペ「Scien…

クオラムセンシング阻害活性を有する新規アゾキシアルケン化合物の発見―薬剤耐性菌の出現を抑える感染症治療薬への応用に期待―

第405回のスポットライトリサーチは、広島大学大学院統合生命科学研究科 生物工学プログラム 細胞機能…

【著者インタビュー動画あり!】有機化学1000本ノック スペクトル解析編

今年4月に発売された書籍で、発売記念著者インタビュー動画も発売前に撮影したのですが、書籍の到…

Dihydropyridazinone環構造を有する初の天然物 Actinopyridazinoneを発見 ~微生物の持つヒドラジン生合成経路の多様性を解明~

第404回のスポットライトリサーチは、北海道大学 大学院薬学研究院 天然物化学研究室の有馬 陸(あり…

化学企業のグローバル・トップ50が発表【2022年版】

The world’s chemical industry didn’t just gr…

常温常圧アンモニア合成~20年かけて性能が約10000倍に!!!

Tshozoです。先日ChemRxivに、東京大学西林研究室による最新の触媒成果が発表されました…

第172回―「小分子変換を指向した固体触媒化学およびナノ材料化学」C.N.R.Rao教授

第172回の海外化学者インタビューは、C.N.R. Rao教授です。CSIR Centre for …

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP