[スポンサーリンク]

化学者のつぶやき

究極の黒を炭素材料で作る

[スポンサーリンク]

GREEN0603black1.PNG

歴史にも残っていないような遠い昔、かつて人類が火を手にしたとき、わたしたちは煙のススとともに、炭素の黒を目の当たりにしたはず。そして、ときは21世紀、人類が到達した究極の黒は、やはり同じくあの炭素でできていました。人類はどこまで完全なる黒に近づくことができたか、その決め手は森のように垂直に並べたカーボンナノチューブにありました。

図は論文[1]より

 

赤でも、青でも、緑でもなく。あらゆる波長の光を反射せず、そのためいかなる色とも混じろうとしない孤高の存在。それが、黒の本質と言われています。

例えば、カーボンブラック。かつては複写紙としても使われていました。確かに黒く見えますが、いくぶん光の照り返しがあるため、どんな色の光も反射しないで吸収するという意味では、完全な黒とはほど遠いでしょう。無秩序にただ炭素原子がそこにあるだけではダメなのです。

 

GREEN201209kuro.png

 

炭素の同素体であっても、カーボンナノチューブとは、炭素原子によって作られる六員環ネットワークのシートが、筒のように丸まったもののことです。ダイヤモンドフラーレンと同じく炭素原子だけからできています。加工次第で有用な性質を引き出せるため、カーボンナノチューブは、盛んに研究されています。とくに、炭素原子の作るシートがただ1枚からできたものは、単層カーボンナノチューブと呼ばれます。

 

  • カーボンナノチューブの森から容易には出られない

やはりそのままではダメで、通常の加工の場合、カーボンナノチューブは、完全な黒ではありません。ところが、近年になって日本の研究チームは、サイズのそろった単層カーボンナノチューブを、平坦な基盤の上で合成することに成功しました。この単層カーボンナノチューブを並べた、カーボンナノチューブのが、現在、完全なる黒に最も近い物質と呼ばれています。

厚さ10マイクロメートルを越えるカーボンナノチューブの森は、さながら樹木のように、およそ垂直方向に並んでいます。林立したこのカーボンナノチューブが、それぞれわずかに傾いている点が実はポイントで、角度が異なるため、カーボンナノチューブの森に入り込んだ光は隙間で反射を繰り返し、やがてすり減っていきます。入ったら容易には抜けられず、灯し火が尽きるまで彷徨い続ければならない、分子の世界に用意された深淵の暗闇が、カーボンナノチューブの森には広がっています。

GREEN0603black2.PNG

暗澹たる闇黒をまとったカーボンナノチューブの森 

 

  • 今までにない機能をひめた炭素材料

プランクの分布則と言えば、極微の世界を統べる量子力学のアイディアが興隆したきっかけのひとつとしても有名で、いわく「自然と放射される光の強さは、それぞれの波長ごと温度にともなって決定され、完全な黒色の物体ならば、光を入射してもすべてを吸収して反射しないため、これ以外の光は観察されない 」とのこと。

 

GREEN0603black3.PNG

実際には、数式で記述されており、ここから導かれる理想の黒を100パーセントとすると、カーボンナノチューブの森は98パーセント以上の完全に近い黒でした。この数値は、従来、知られていた他の材料の追随を許さないずば抜けた数値です。

このようにして、炭素材料は、究極の黒の王座に再び戻りました。

 

カーボンナノチューブは、従来の炭素材料とは異なるユニークな化学構造をしています。カーボンナノチューブをめぐる加工技術は洗練され、スポーツ用品から電子部品、はては宇宙開発まで、その期待ぶりは枚挙にいとまがありません。

まだまだ残暑も厳しく、太陽のまぶしい日々ですが、底知れぬ漆黒の色彩にはどのような可能性が隠されているのか、カーボンナノチューブの森に心ときめかせるのもよいかもしれません。

 

  • 参考論文

[1] "A black body absorber from vertically aligned single-walled carbon nanotubes" Kohei Mizuno et al. Proc. Natl Acad. Sci. USA 2009 DOI: 10.1073/pnas.0900155106

 

  • 関連書籍

 

 
The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. 有機反応を俯瞰する ー縮合反応
  2. 学生・ポスドクの方、ちょっとアメリカ旅行しませんか?:SciFi…
  3. タイに講演にいってきました
  4. ちっちゃい異性を好む不思議な生物の愛を仲立ちするフェロモン
  5. 無限の可能性を秘めたポリマー
  6. いざ、低温反応!さて、バスはどうする?〜水/メタノール混合系で、…
  7. 有機アジド(2):爆発性
  8. 天然バナジウム化合物アマバジンの奇妙な冒険

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. テトラキス(トリフェニルホスフィン)パラジウム(0) : Tetrakis(triphenylphosphine)palladium(0)
  2. 非天然アミノ酸合成に有用な不斉ロジウム触媒の反応機構解明
  3. 顕微鏡で有機化合物のカタチを決める!
  4. 超分子化学と機能性材料に関する国際シンポジウム2018
  5. トリフルオロメタンスルホン酸ランタン(III):Lanthanum(III) Trifluoromethanesulfonate
  6. 住友化学の9月中間営業益は+20.5%、精密・医薬など好調で
  7. “かぼちゃ分子”内で分子内Diels–Alder反応
  8. ナノ粒子の機能と応用 ?コロイダルシリカを中心に?【終了】
  9. ドライアイスに御用心
  10. 化学のあるある誤変換

関連商品

注目情報

注目情報

最新記事

トム・マイモニ Thomas J. Maimone

トーマス・J・マイモニ(Thomas J. Maimone、1982年2月13日–)は米国の有機化学…

キャリアデザイン研究講演会~化学研究と企業と君との出会いをさがそう!~

詳細はこちら:https://csjkinki.com/career/日時…

世界のエリートが今一番入りたい大学 ミネルバ

概要・校舎がない(4年間で世界の7都市をめぐる)・教師は「講義」も「テスト」もしない…

鴻が見る風景 ~山本尚教授の巻頭言より~

Tshozoです。先日公開され色々話題を呼んだ山本尚 元日本化学会会長による日本化学会論説 巻頭言(…

C–NおよびC–O求電子剤間の還元的クロスカップリング

C–N求電子剤とC–O求電子剤間のクロスカップリング反応が初めて開発された。有機化合物中に普遍的に存…

Principles and Applications of Aggregation-Induced Emission

内容This book explores the aggregation-induced e…

Chem-Station Twitter

PAGE TOP