[スポンサーリンク]

化学者のつぶやき

究極の黒を炭素材料で作る

[スポンサーリンク]

GREEN0603black1.PNG

歴史にも残っていないような遠い昔、かつて人類が火を手にしたとき、わたしたちは煙のススとともに、炭素の黒を目の当たりにしたはず。そして、ときは21世紀、人類が到達した究極の黒は、やはり同じくあの炭素でできていました。人類はどこまで完全なる黒に近づくことができたか、その決め手は森のように垂直に並べたカーボンナノチューブにありました。

図は論文[1]より

 

赤でも、青でも、緑でもなく。あらゆる波長の光を反射せず、そのためいかなる色とも混じろうとしない孤高の存在。それが、黒の本質と言われています。

例えば、カーボンブラック。かつては複写紙としても使われていました。確かに黒く見えますが、いくぶん光の照り返しがあるため、どんな色の光も反射しないで吸収するという意味では、完全な黒とはほど遠いでしょう。無秩序にただ炭素原子がそこにあるだけではダメなのです。

 

GREEN201209kuro.png

 

炭素の同素体であっても、カーボンナノチューブとは、炭素原子によって作られる六員環ネットワークのシートが、筒のように丸まったもののことです。ダイヤモンドフラーレンと同じく炭素原子だけからできています。加工次第で有用な性質を引き出せるため、カーボンナノチューブは、盛んに研究されています。とくに、炭素原子の作るシートがただ1枚からできたものは、単層カーボンナノチューブと呼ばれます。

 

  • カーボンナノチューブの森から容易には出られない

やはりそのままではダメで、通常の加工の場合、カーボンナノチューブは、完全な黒ではありません。ところが、近年になって日本の研究チームは、サイズのそろった単層カーボンナノチューブを、平坦な基盤の上で合成することに成功しました。この単層カーボンナノチューブを並べた、カーボンナノチューブのが、現在、完全なる黒に最も近い物質と呼ばれています。

厚さ10マイクロメートルを越えるカーボンナノチューブの森は、さながら樹木のように、およそ垂直方向に並んでいます。林立したこのカーボンナノチューブが、それぞれわずかに傾いている点が実はポイントで、角度が異なるため、カーボンナノチューブの森に入り込んだ光は隙間で反射を繰り返し、やがてすり減っていきます。入ったら容易には抜けられず、灯し火が尽きるまで彷徨い続ければならない、分子の世界に用意された深淵の暗闇が、カーボンナノチューブの森には広がっています。

GREEN0603black2.PNG

暗澹たる闇黒をまとったカーボンナノチューブの森 

 

  • 今までにない機能をひめた炭素材料

プランクの分布則と言えば、極微の世界を統べる量子力学のアイディアが興隆したきっかけのひとつとしても有名で、いわく「自然と放射される光の強さは、それぞれの波長ごと温度にともなって決定され、完全な黒色の物体ならば、光を入射してもすべてを吸収して反射しないため、これ以外の光は観察されない 」とのこと。

 

GREEN0603black3.PNG

実際には、数式で記述されており、ここから導かれる理想の黒を100パーセントとすると、カーボンナノチューブの森は98パーセント以上の完全に近い黒でした。この数値は、従来、知られていた他の材料の追随を許さないずば抜けた数値です。

このようにして、炭素材料は、究極の黒の王座に再び戻りました。

 

カーボンナノチューブは、従来の炭素材料とは異なるユニークな化学構造をしています。カーボンナノチューブをめぐる加工技術は洗練され、スポーツ用品から電子部品、はては宇宙開発まで、その期待ぶりは枚挙にいとまがありません。

まだまだ残暑も厳しく、太陽のまぶしい日々ですが、底知れぬ漆黒の色彩にはどのような可能性が隠されているのか、カーボンナノチューブの森に心ときめかせるのもよいかもしれません。

 

  • 参考論文

[1] "A black body absorber from vertically aligned single-walled carbon nanotubes" Kohei Mizuno et al. Proc. Natl Acad. Sci. USA 2009 DOI: 10.1073/pnas.0900155106

 

  • 関連書籍

 

 
Avatar photo

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 【追悼企画】鋭才有機合成化学者ーProf. David Gin
  2. 化学者のためのWordマクロ -Supporting Infor…
  3. 大環状ヘテロ環の合成から抗がん剤開発へ
  4. 日本発化学ジャーナルの行く末は?
  5. スーパーなパーティクル ースーパーパーティクルー
  6. 誰でも使えるイオンクロマトグラフ 「Eco IC」新発売:メトロ…
  7. Reaxys Ph.D Prize2014ファイナリスト45名発…
  8. Micro Flow Reactor ~革新反応器の世界~ (入…

注目情報

ピックアップ記事

  1. 日本国際賞―受賞化学者一覧
  2. 君はホンモノの潤滑油を知っているか?:自己PRで潤滑油であることをアピールする前に中身や仕組みを知っておこう
  3. リッター反応 Ritter Reaction
  4. ビニルモノマーの超精密合成法の開発:モノマー配列、分子量、立体構造の多重制御
  5. 中村 浩之 Hiroyuki Nakamura
  6. Bergfriendhof (山の墓地)
  7. 合同資源上瀑工場
  8. 液相における粒子間水素移動によって加速されるアルカンとベンゼンの脱水素カップリング反応
  9. 素粒子と遊ぼう!
  10. 狙いを定めて、炭素-フッ素結合の変換!~光触媒とスズの協働作用~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年9月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

二酸化マンガンの極小ナノサイズ化で次世代電池や触媒の性能を底上げ!

第649回のスポットライトリサーチは、東北大学大学院環境科学研究科(本間研究室)博士課程後期2年の飯…

日本薬学会第145年会 に参加しよう!

3月27日~29日、福岡国際会議場にて 「日本薬学会第145年会」 が開催されま…

TLC分析がもっと楽に、正確に! ~TLC分析がアナログからデジタルに

薄層クロマトグラフィーは分離手法の一つとして、お金をかけず、安価な方法として現在…

先端の質量分析:GC-MSおよびLC-MSデータ処理における機械学習の応用

キャラクタライゼーションの機械学習応用は、マテリアルズ・インフォマティクス(MI)およびラボオートメ…

原子半径・電気陰性度・中間体の安定性に起因する課題を打破〜担持Niナノ粒子触媒の協奏的触媒作用〜

第648回のスポットライトリサーチは、東京大学大学院工学系研究科(山口研究室)博士課程後期2年の松山…

リビングラジカル重合ガイドブック -材料設計のための反応制御-

概要高機能高分子材料の合成法として必須となったリビングラジカル重合を、ラジカル重合の基礎から、各…

高硬度なのに高速に生分解する超分子バイオプラスチックのはなし

Tshozoです。これまでプラスチックの選別の話やマイクロプラスチックの話、およびナノプラスチッ…

新発想の分子モーター ―分子機械の新たなパラダイム―

第646回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機反応論研究室 助教の …

大人気の超純水製造装置を組み立ててみた

化学・生物系の研究室に欠かせない超純水装置。その中でも最も知名度が高いのは、やはりメルクの Mill…

Carl Boschの人生 その11

Tshozoです。間が空きましたが前回の続きです。時系列が前後しますが窒素固定の開発を始めたころ、B…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP