[スポンサーリンク]

化学者のつぶやき

究極の黒を炭素材料で作る

GREEN0603black1.PNG

歴史にも残っていないような遠い昔、かつて人類が火を手にしたとき、わたしたちは煙のススとともに、炭素の黒を目の当たりにしたはず。そして、ときは21世紀、人類が到達した究極の黒は、やはり同じくあの炭素でできていました。人類はどこまで完全なる黒に近づくことができたか、その決め手は森のように垂直に並べたカーボンナノチューブにありました。

図は論文[1]より

 

赤でも、青でも、緑でもなく。あらゆる波長の光を反射せず、そのためいかなる色とも混じろうとしない孤高の存在。それが、黒の本質と言われています。

例えば、カーボンブラック。かつては複写紙としても使われていました。確かに黒く見えますが、いくぶん光の照り返しがあるため、どんな色の光も反射しないで吸収するという意味では、完全な黒とはほど遠いでしょう。無秩序にただ炭素原子がそこにあるだけではダメなのです。

 

GREEN201209kuro.png

 

炭素の同素体であっても、カーボンナノチューブとは、炭素原子によって作られる六員環ネットワークのシートが、筒のように丸まったもののことです。ダイヤモンドフラーレンと同じく炭素原子だけからできています。加工次第で有用な性質を引き出せるため、カーボンナノチューブは、盛んに研究されています。とくに、炭素原子の作るシートがただ1枚からできたものは、単層カーボンナノチューブと呼ばれます。

 

  • カーボンナノチューブの森から容易には出られない

やはりそのままではダメで、通常の加工の場合、カーボンナノチューブは、完全な黒ではありません。ところが、近年になって日本の研究チームは、サイズのそろった単層カーボンナノチューブを、平坦な基盤の上で合成することに成功しました。この単層カーボンナノチューブを並べた、カーボンナノチューブのが、現在、完全なる黒に最も近い物質と呼ばれています。

厚さ10マイクロメートルを越えるカーボンナノチューブの森は、さながら樹木のように、およそ垂直方向に並んでいます。林立したこのカーボンナノチューブが、それぞれわずかに傾いている点が実はポイントで、角度が異なるため、カーボンナノチューブの森に入り込んだ光は隙間で反射を繰り返し、やがてすり減っていきます。入ったら容易には抜けられず、灯し火が尽きるまで彷徨い続ければならない、分子の世界に用意された深淵の暗闇が、カーボンナノチューブの森には広がっています。

GREEN0603black2.PNG

暗澹たる闇黒をまとったカーボンナノチューブの森 

 

  • 今までにない機能をひめた炭素材料

プランクの分布則と言えば、極微の世界を統べる量子力学のアイディアが興隆したきっかけのひとつとしても有名で、いわく「自然と放射される光の強さは、それぞれの波長ごと温度にともなって決定され、完全な黒色の物体ならば、光を入射してもすべてを吸収して反射しないため、これ以外の光は観察されない 」とのこと。

 

GREEN0603black3.PNG

実際には、数式で記述されており、ここから導かれる理想の黒を100パーセントとすると、カーボンナノチューブの森は98パーセント以上の完全に近い黒でした。この数値は、従来、知られていた他の材料の追随を許さないずば抜けた数値です。

このようにして、炭素材料は、究極の黒の王座に再び戻りました。

 

カーボンナノチューブは、従来の炭素材料とは異なるユニークな化学構造をしています。カーボンナノチューブをめぐる加工技術は洗練され、スポーツ用品から電子部品、はては宇宙開発まで、その期待ぶりは枚挙にいとまがありません。

まだまだ残暑も厳しく、太陽のまぶしい日々ですが、底知れぬ漆黒の色彩にはどのような可能性が隠されているのか、カーボンナノチューブの森に心ときめかせるのもよいかもしれません。

 

  • 参考論文

[1] "A black body absorber from vertically aligned single-walled carbon nanotubes" Kohei Mizuno et al. Proc. Natl Acad. Sci. USA 2009 DOI: 10.1073/pnas.0900155106

 

  • 関連書籍

 

 
The following two tabs change content below.
Green

Green

静岡で化学を教えています。よろしくお願いします。
Green

最新記事 by Green (全て見る)

関連記事

  1. 第96回日本化学会付設展示会ケムステキャンペーン!Part II…
  2. 人工DNAから医薬をつくる!
  3. メチレン炭素での触媒的不斉C(sp3)-H活性化反応
  4. 金属原子のみでできたサンドイッチ
  5. 低分子化合物の新しい合成法 コンビナトリアル生合成 生合成遺伝子…
  6. DNAが絡まないためのループ
  7. ナノ孔に吸い込まれていく分子の様子をスナップショット撮影!
  8. Glenn Gould と錠剤群

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. カルボニル-エン反応(プリンス反応) Carbonyl-Ene Reaction (Prins Reaction)
  2. 化学とウェブのフュージョン
  3. オキサリプラチン /oxaliplatin
  4. 化学企業のグローバル・トップ50が発表
  5. シャウ ピリミジン合成 Shaw Pyrimidine Synthesis
  6. マイケル付加 Michael Addition
  7. 「マイクロリアクター」装置化に成功
  8. 金属中心に不斉を持つオレフィンメタセシス触媒
  9. 炭素ボールに穴、水素入れ閉じ込め 「分子手術」成功
  10. 高反応性かつ取扱い容易な一酸化炭素の代用試薬,N-ホルミルサッカリン

関連商品

注目情報

注目情報

最新記事

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

アメリカで Ph. D. を取る –研究室に訪問するの巻–

この連載は、米国の大学院で Ph.D. を取得することを目指す学生が日記感覚で近況を記録するためのも…

光触媒ラジカルカスケードが実現する網羅的天然物合成

四川大学のYong Qinらは、可視光レドックス触媒によって促進される窒素ラジカルカスケード反応によ…

有機反応を俯瞰する ー縮合反応

今回は、高校化学でも登場する有機反応であるエステル合成反応を中心に、その反応が起こるメカニズムを解説…

Chem-Station Twitter

PAGE TOP