[スポンサーリンク]

化学者のつぶやき

究極の黒を炭素材料で作る

[スポンサーリンク]

GREEN0603black1.PNG

歴史にも残っていないような遠い昔、かつて人類が火を手にしたとき、わたしたちは煙のススとともに、炭素の黒を目の当たりにしたはず。そして、ときは21世紀、人類が到達した究極の黒は、やはり同じくあの炭素でできていました。人類はどこまで完全なる黒に近づくことができたか、その決め手は森のように垂直に並べたカーボンナノチューブにありました。

図は論文[1]より

 

赤でも、青でも、緑でもなく。あらゆる波長の光を反射せず、そのためいかなる色とも混じろうとしない孤高の存在。それが、黒の本質と言われています。

例えば、カーボンブラック。かつては複写紙としても使われていました。確かに黒く見えますが、いくぶん光の照り返しがあるため、どんな色の光も反射しないで吸収するという意味では、完全な黒とはほど遠いでしょう。無秩序にただ炭素原子がそこにあるだけではダメなのです。

 

GREEN201209kuro.png

 

炭素の同素体であっても、カーボンナノチューブとは、炭素原子によって作られる六員環ネットワークのシートが、筒のように丸まったもののことです。ダイヤモンドフラーレンと同じく炭素原子だけからできています。加工次第で有用な性質を引き出せるため、カーボンナノチューブは、盛んに研究されています。とくに、炭素原子の作るシートがただ1枚からできたものは、単層カーボンナノチューブと呼ばれます。

 

  • カーボンナノチューブの森から容易には出られない

やはりそのままではダメで、通常の加工の場合、カーボンナノチューブは、完全な黒ではありません。ところが、近年になって日本の研究チームは、サイズのそろった単層カーボンナノチューブを、平坦な基盤の上で合成することに成功しました。この単層カーボンナノチューブを並べた、カーボンナノチューブのが、現在、完全なる黒に最も近い物質と呼ばれています。

厚さ10マイクロメートルを越えるカーボンナノチューブの森は、さながら樹木のように、およそ垂直方向に並んでいます。林立したこのカーボンナノチューブが、それぞれわずかに傾いている点が実はポイントで、角度が異なるため、カーボンナノチューブの森に入り込んだ光は隙間で反射を繰り返し、やがてすり減っていきます。入ったら容易には抜けられず、灯し火が尽きるまで彷徨い続ければならない、分子の世界に用意された深淵の暗闇が、カーボンナノチューブの森には広がっています。

GREEN0603black2.PNG

暗澹たる闇黒をまとったカーボンナノチューブの森 

 

  • 今までにない機能をひめた炭素材料

プランクの分布則と言えば、極微の世界を統べる量子力学のアイディアが興隆したきっかけのひとつとしても有名で、いわく「自然と放射される光の強さは、それぞれの波長ごと温度にともなって決定され、完全な黒色の物体ならば、光を入射してもすべてを吸収して反射しないため、これ以外の光は観察されない 」とのこと。

 

GREEN0603black3.PNG

実際には、数式で記述されており、ここから導かれる理想の黒を100パーセントとすると、カーボンナノチューブの森は98パーセント以上の完全に近い黒でした。この数値は、従来、知られていた他の材料の追随を許さないずば抜けた数値です。

このようにして、炭素材料は、究極の黒の王座に再び戻りました。

 

カーボンナノチューブは、従来の炭素材料とは異なるユニークな化学構造をしています。カーボンナノチューブをめぐる加工技術は洗練され、スポーツ用品から電子部品、はては宇宙開発まで、その期待ぶりは枚挙にいとまがありません。

まだまだ残暑も厳しく、太陽のまぶしい日々ですが、底知れぬ漆黒の色彩にはどのような可能性が隠されているのか、カーボンナノチューブの森に心ときめかせるのもよいかもしれません。

 

  • 参考論文

[1] "A black body absorber from vertically aligned single-walled carbon nanotubes" Kohei Mizuno et al. Proc. Natl Acad. Sci. USA 2009 DOI: 10.1073/pnas.0900155106

 

  • 関連書籍

 

 
Green

Green

投稿者の記事一覧

静岡で化学を教えています。よろしくお願いします。

関連記事

  1. 高分子鎖デザインがもたらすポリマーサイエンスの再創造
  2. 海外の教授にメールを送る-使える英語表現と文例
  3. 不活性アルケンの分子間[2+2]環化付加反応
  4. こんな装置見たことない!化学エンジニアリングの発明品
  5. 生体外の環境でタンパクを守るランダムポリマーの設計
  6. ケムステ新コンテンツ「化学地球儀」
  7. タミフルの効果
  8. 塩基と酸でヘテロ環サイズを”調節する”

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. フレデリック・キッピング Frederic Stanley Kipping
  2. ジャーナル編集ポリシーデータベース「Transpose」
  3. 共有結合性リガンドを有するタンパク質の網羅的探索法
  4. エッシェンモーザー・クライゼン転位 Eschenmoser-Claisen Rearrangement
  5. “Wakati Project” 低コストで農作物を保存する技術とは
  6. tRNAの新たな役割:大豆と微生物のコミュニケーション
  7. 祝5周年!-Nature Chemistryの5年間-
  8. 創薬開発で使用される偏った有機反応
  9. 独自の有機不斉触媒反応を用いた (—)-himalensine Aの全合成
  10. ビス[α,α-ビス(トリフルオロメチル)ベンゼンメタノラト]ジフェニルサルファー : Bis[alpha,alpha-bis(trifluoromethyl)benzenemethanolato]diphenylsulfur

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

新車の香りは「発がん性物質」の香り、1日20分嗅ぐだけで発がんリスクが高まる可能性

「新車の香り」には、がんや生殖障害、子どもの先天性欠損症などを引き起こす可能性があるベンゼンやホルム…

溶液を流すだけで誰でも簡単に高分子を合成できるリサイクル可能な不均一系ラジカル発生剤の開発

第 295 回のスポットライトリサーチは東京大学豊田研究室の博士課程 1 年 岡美奈実さんと修士課程…

Carl Boschの人生 その9

Tshozoです。書いてると色々膨らんで収集がつかなくなりますね。ということで前回の続き。W…

創薬・医療系ベンチャー支援プログラム”BlockbusterTOKYO” ビジネスプラン発表会を開催!

東京都が主催し、Beyond Next Ventures株式会社が運営するBlockbuster T…

酸化反応を駆使した(-)-deoxoapodineの世界最短合成

第294回のスポットライトリサーチは、吉田慶 博士にお願いしました。今回取り上げる研究は有機…

特許取得のための手続き

bergです。本記事では特許出願に必要な手続きについてかいつまんでご紹介します。皆さんの研究もひょっ…

「ソーシャルメディアを活用したスタートアップの価値向上」 BlockbusterTOKYO 2020 第9回 研修プログラムを実施!

Blockbuster TOKYOは東京都が主催し、Beyond Next Ventures株式会社…

カルボカチオンの華麗なリレー:ブラシラン類の新たな生合成経路

反応経路の自動探索によりセスキテルペンのトリコブラシレノールの新たな全生合成経路が提唱された。ト…

Chem-Station Twitter

PAGE TOP