[スポンサーリンク]

化学者のつぶやき

光触媒ラジカルカスケードが実現する網羅的天然物合成

[スポンサーリンク]

四川大学のYong Qinらは、可視光レドックス触媒によって促進される窒素ラジカルカスケード反応によって、インドールアルカロイドの骨格を迅速構築する方法論を開発した。本法によって選択的に得られる多能性中間体を用い、33種類の生物活性インドールアルカロイドの全合成も達成している。

“A Radical Cascade Enabling Collective Syntheses of Natural Products”
Wang, X.; Xia, D.; Qin, W.; Zhou, R.; Zhou, X.; Zhou, Q.; Liu, W.; Dai, X.; Wang, H.; Wang, S.; Tan, L.; Zhang, D.; Song, H.; Liu, X.-Y.; Qin, Y.* Chem 2017, 2, 803–816. doi:10.1016/j.chempr.2017.04.007

問題設定

 有機合成の進歩によって、個々の天然物もしくは少数の誘導体を合成する手法は確立されつつある。近年ではより多数の誘導体合成へとつながる“collective syntheses”[1]の報告がなされつつあるが、未だ開発ステージの域をでない。

 ラジカルカスケード反応は骨格構築に強力な反応となるが、ラジカル種の高い反応性ゆえ、官能基・立体・化学選択性を制御することは困難を極める。ラジカルを発生させるための準備工程にも手間がかかるため、複雑化合物への応用は限られていた。

技術や手法のキモ

 近年では可視光レドックス触媒を用いる合成法が、ラジカル化学に大きな進展を与え、天然物合成にも活用されつつある。

 Qinらは、多様な多環式インドールアルカロイド天然物へのアプローチを可能とするため、その中間体を効率的合成できるラジカルカスケード反応を設計した。具体的には容易に合成可能な光学活性スルホンアミドを原料とし、下図のように反応をデザインすることで、目的の中間体が得られると考えた。分子内にオレフィンを用意しておくことでAspidosperma型中間体が、マイケルアクセプターを共存させることで、テトラヒドロカルボリン骨格もしくはCorynanthe型中間体がそれぞれ得られる。

主張の有効性検証

①鍵反応条件の最適化

最初の肝となるのが窒素ラジカルの生成である。N-H結合から直接的に生成できる手法が望まれるが、先例[2]が少なく困難が予想された。アニリンの保護基、塩基、溶媒、温度を検討した結果、Ts保護の場合にのみ反応が進行し、Aspidosperma型中間体が下記条件にて高収率・高立体選択的に得られた。TsをMeやCO2Me, Bz, Bocにすると反応が進行しない。これはN-H結合の酸性度が弱いため、PCET過程からのアミニルラジカル生成が抑制されるためであると考えられる。

マイケルアクセプターを多めに使用することで、分子間反応経由でも高収率で環化が進行している。Aspidosperma型中間体では2段階目の分子内反応を5-exo・ 6-exo環化としてあり、分子内反応が効率的に進行するように設計されていた。Corynanthe型中間体合成では、アルケンまでの炭素鎖長を短くすることで2段階目の分子内反応を抑制し、分子間反応を優先させている。(下図は代表例)

様々な基質に対して反応を行っているが、スペースの都合から書き切れないので、詳しくは元論文を参照頂きたい。

②中間体を用いる網羅的全合成

33種類もの天然物を全合成しているが、こちらも全て記すことは出来ないので、一例として(-)-Yohimbineの全合成のみ示しておく。骨格さえ出来てしまえば、あとの官能基調節はほとんど汎用変換法で片付く。

議論すべき点

  • 基質の選択が巧みなため、反応がきれいに行っている。
  • 先例であるKnowlesの系[2a]では酸化力の強い光触媒を用いているため、アアクセプターに制限があった。今回の系では酸化力の弱い光触媒Ir(dtbby)(ppy)2PF6(IrⅢ*-IrⅡ:0.66V vs SCE)を用いている。おそらくはスルホンアミドの脱プロトン化がしっかりできているため、弱い酸化剤でもラジカルが生成出来るのだと思われる。

参考論文

  1. Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Nature 2011, 475, 183. doi:10.1038/nature10232
  2. (a) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268. doi:10.1038/nature19811 (b) Chu, J. C. K.; Rovis, T. Nature 2016, 539, 272. doi:10.1038/nature19810
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. ChemDraw for iPadを先取りレビュー!
  2. 未解明のテルペン類の生合成経路を理論的に明らかに
  3. テルペンを酸化的に”飾り付ける”
  4. エッセイ「産業ポリマーと藝術ポリマーのあいだ」について
  5. オペレーションはイノベーションの夢を見るか? その3+まとめ
  6. 2019年ケムステ人気記事ランキング
  7. 計算化学:DFTって何? PartIII
  8. 論文コレクター必見!WindowsでPDFを全文検索する方法

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 水と塩とリチウム電池 ~リチウムイオン電池のはなし2にかえて~
  2. 第1回ACCELシンポジウムを聴講してきました
  3. デーブナー・フォン=ミラー キノリン合成 Doebner-von Miller quinoline synthesis
  4. sp2-カルボカチオンを用いた炭化水素アリール化
  5. 持田製薬、創薬研究所を新設
  6. ケムステバーチャルプレミアレクチャーの放送開始決定!
  7. 科学ボランティアは縁の下の力持ち
  8. 「原子」が見えた! なんと一眼レフで撮影に成功
  9. 化学小説まとめ
  10. 二フッ化酸素 (oxygen difluoride)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年10月
« 9月   11月 »
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

注目情報

最新記事

エキノコックスにかかわる化学物質について

Tshozoです。40年以上前でしょうか、手塚治虫氏の有名な作品「ブラック・ジャック」でこう…

秋田英万 Akita Hidetaka

秋田 英万(あきた ひでたか)は、日本の有機化学者である。千葉大学薬学研究院および東北大学薬学研究院…

香料化学 – におい分子が作るかおりの世界

(さらに…)…

ギ酸ナトリウムでconPETを進化!

塩化アリールのラジカルカップリング反応が開発された。芳香環の電子状態にかかわらず種々の塩化アリールに…

料理と科学のおいしい出会い: 分子調理が食の常識を変える

(さらに…)…

シビれる(T T)アジリジン合成

電気化学的に不活性アルケンと一級アミンをカップリングさせることで、N-アルキルアジリジンが合成された…

mi3 企業研究者のためのMI入門③:避けて通れぬ大学数学!MIの道具として数学を使いこなすための参考書をご紹介

最近よく耳にするデジタル・トランスフォーメーション(DX)やマテリアルズ・インフォマティクス(MI)…

産総研より刺激に応じて自在に剥がせるプライマーが開発される

産業技術総合研究所機能化学研究部門スマート材料グループ 相沢 美帆 研究員は、刺激を加える前には接着…

マイクロ波の技術メリット・事業メリットをお伝えします!/マイクロ波化学(株)10月度ウェビナー

10月は当社(マイクロ波化学)の技術あるいは当社の事業に興味がある方、それぞれをテーマにしたウェビナ…

宮田完ニ郎 Miyata Kanjiro

宮田 完ニ郎 (みやた かんじろう) は、日本の有機化学者である。東京大学大学院工学系研究科マテリア…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP