[スポンサーリンク]

化学者のつぶやき

光触媒ラジカルカスケードが実現する網羅的天然物合成

[スポンサーリンク]

四川大学のYong Qinらは、可視光レドックス触媒によって促進される窒素ラジカルカスケード反応によって、インドールアルカロイドの骨格を迅速構築する方法論を開発した。本法によって選択的に得られる多能性中間体を用い、33種類の生物活性インドールアルカロイドの全合成も達成している。

“A Radical Cascade Enabling Collective Syntheses of Natural Products”
Wang, X.; Xia, D.; Qin, W.; Zhou, R.; Zhou, X.; Zhou, Q.; Liu, W.; Dai, X.; Wang, H.; Wang, S.; Tan, L.; Zhang, D.; Song, H.; Liu, X.-Y.; Qin, Y.* Chem 2017, 2, 803–816. doi:10.1016/j.chempr.2017.04.007

問題設定

 有機合成の進歩によって、個々の天然物もしくは少数の誘導体を合成する手法は確立されつつある。近年ではより多数の誘導体合成へとつながる“collective syntheses”[1]の報告がなされつつあるが、未だ開発ステージの域をでない。

 ラジカルカスケード反応は骨格構築に強力な反応となるが、ラジカル種の高い反応性ゆえ、官能基・立体・化学選択性を制御することは困難を極める。ラジカルを発生させるための準備工程にも手間がかかるため、複雑化合物への応用は限られていた。

技術や手法のキモ

 近年では可視光レドックス触媒を用いる合成法が、ラジカル化学に大きな進展を与え、天然物合成にも活用されつつある。

 Qinらは、多様な多環式インドールアルカロイド天然物へのアプローチを可能とするため、その中間体を効率的合成できるラジカルカスケード反応を設計した。具体的には容易に合成可能な光学活性スルホンアミドを原料とし、下図のように反応をデザインすることで、目的の中間体が得られると考えた。分子内にオレフィンを用意しておくことでAspidosperma型中間体が、マイケルアクセプターを共存させることで、テトラヒドロカルボリン骨格もしくはCorynanthe型中間体がそれぞれ得られる。

主張の有効性検証

①鍵反応条件の最適化

最初の肝となるのが窒素ラジカルの生成である。N-H結合から直接的に生成できる手法が望まれるが、先例[2]が少なく困難が予想された。アニリンの保護基、塩基、溶媒、温度を検討した結果、Ts保護の場合にのみ反応が進行し、Aspidosperma型中間体が下記条件にて高収率・高立体選択的に得られた。TsをMeやCO2Me, Bz, Bocにすると反応が進行しない。これはN-H結合の酸性度が弱いため、PCET過程からのアミニルラジカル生成が抑制されるためであると考えられる。

マイケルアクセプターを多めに使用することで、分子間反応経由でも高収率で環化が進行している。Aspidosperma型中間体では2段階目の分子内反応を5-exo・ 6-exo環化としてあり、分子内反応が効率的に進行するように設計されていた。Corynanthe型中間体合成では、アルケンまでの炭素鎖長を短くすることで2段階目の分子内反応を抑制し、分子間反応を優先させている。(下図は代表例)

様々な基質に対して反応を行っているが、スペースの都合から書き切れないので、詳しくは元論文を参照頂きたい。

②中間体を用いる網羅的全合成

33種類もの天然物を全合成しているが、こちらも全て記すことは出来ないので、一例として(-)-Yohimbineの全合成のみ示しておく。骨格さえ出来てしまえば、あとの官能基調節はほとんど汎用変換法で片付く。

議論すべき点

  • 基質の選択が巧みなため、反応がきれいに行っている。
  • 先例であるKnowlesの系[2a]では酸化力の強い光触媒を用いているため、アアクセプターに制限があった。今回の系では酸化力の弱い光触媒Ir(dtbby)(ppy)2PF6(IrⅢ*-IrⅡ:0.66V vs SCE)を用いている。おそらくはスルホンアミドの脱プロトン化がしっかりできているため、弱い酸化剤でもラジカルが生成出来るのだと思われる。

参考論文

  1. Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Nature 2011, 475, 183. doi:10.1038/nature10232
  2. (a) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268. doi:10.1038/nature19811 (b) Chu, J. C. K.; Rovis, T. Nature 2016, 539, 272. doi:10.1038/nature19810
cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 英語で授業/発表するときのいろは【アメリカで Ph.D. をとる…
  2. カラムやって
  3. Scifinderが実験項情報閲覧可能に!
  4. アミロイド認識で活性を示す光触媒の開発:アルツハイマー病の新しい…
  5. アミロイド線維を触媒に応用する
  6. α-トコフェロールの立体選択的合成
  7. 電子学術情報の利活用
  8. 誰でも使えるイオンクロマトグラフ 「Eco IC」新発売:メトロ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. プラテンシマイシン /platensimycin
  2. 「ねるねるねるね」はなぜ色が変わって膨らむのか?
  3. 3-ベンジル-5-(2-ヒドロキシエチル)-4-メチルチアゾリウムクロリド / 3-Benzyl-5-(2-hydroxyethyl)-4-methylthiazolium Chloride
  4. ネフ反応 Nef Reaction
  5. 視覚を制御する物質からヒントを得た異性化反応
  6. 第23回 医療、工業、軍事、広がるスマートマテリアル活躍の場ーPavel Anzenbacher教授
  7. 単結合を極める
  8. フラーレンの中には核反応を早くする不思議空間がある
  9. その電子、私が引き受けよう
  10. ペンタシクロアナモキシ酸 pentacycloanamoxic acid

関連商品

注目情報

注目情報

最新記事

ウレエートを強塩基性官能基として利用したキラルブレンステッド塩基触媒の創製

第255回のスポットライトリサーチは、東北大学大学院理学研究科 化学専攻・石川 奨さんにお願いしまし…

天然物生合成経路および酵素反応機構の解析 –有機合成から生化学への挑戦–

ケムステ海外研究記の第 33 回はテキサス大学 Liu 研究室に留学されていた牛丸理一郎先生にお願い…

海外機関に訪問し、英語講演にチャレンジ!~③ いざ、機関訪問!~

海外学会のついでに近郊機関に訪問し、ディスカッションと英語講演にトライしてみよう!シリーズ記事です。…

サントリー生命科学研究者支援プログラム SunRiSE

サントリー生命科学財団は1月31日、生命科学分野の若手研究者に1人当たり研究費1千万円を5年間、計5…

コロナウイルスが免疫システムから逃れる方法(2)

前回の記事では、コロナウイルスの基礎知識とコロナウイルスが持つRNA分解酵素(EndoU)について述…

第79回―「高分子材料と流体の理論モデリング」Anna Balazs教授

第79回の海外化学者インタビューは、アンナ・バラズ教授です。ピッツバーグ大学 化学・石油工学科に在籍…

Chem-Station Twitter

PAGE TOP