[スポンサーリンク]

スポットライトリサーチ

液体中で高機能触媒として働くペロブスカイト酸化物の開発

[スポンサーリンク]

第528回のスポットライトリサーチは、東京工業大学 科学技術創成研究院 フロンティア材料研究所 鎌田研究室の相原 健司(あいはら たけし)助教にお願いしました。

鎌田研究室は、 新しい触媒材料や化学反応の開発を通して持続可能なカーボンニュートラル社会の構築に貢献することを目標として研究を行っています。具体的には均一系触媒の研究で得た無機合成技術を生かし、結晶性金属酸化物を基軸とした新しい固体触媒の科学に挑戦しています。特に、石油などの化石資源に大きく依存した現在の化学プロセスから、天然ガスやバイオマスなどの多様な天然炭素資源から様々な化学品(モノマー・燃料など)を低エネルギーで作りCO2排出を大幅に削減できる触媒技術の開発を目指しています。

本プレスリリースは固体触媒についてで、独自に開発したジカルボン酸を用いたゾル–ゲル法を拡張し、原料を水中で反応させ得られた前駆体を空気中で処理することで、純度の高いペロブスカイト酸化物ナノ粒子の合成に成功しました。この研究成果は、「ACS Applied Materials & Interfaces」誌に掲載され、プレスリリースにも成果の概要が公開されています。

Nanosized Ti-Based Perovskite Oxides as Acid–Base Bifunctional Catalysts for Cyanosilylation of Carbonyl Compounds

Takeshi Aihara, Wataru Aoki, Shin Kiyohara, Yu Kumagai, Keigo Kamata, and Michikazu Hara

ACS Appl. Mater. Interfaces 2023, 15, 14, 17957–17968

DOI: doi.org/10.1021/acsami.3c01629

研究室を主宰されている鎌田慶吾 教授より相原助教についてコメントを頂戴いたしました!

相原健司さんは、2021年4月から当研究室に博士研究員として参画し、今年の4月より助教として益々活躍している若手研究者です。ペロブスカイト酸化物ナノ粒子触媒の研究は、私が東工大に来た8年ほど前からスタートしましたが、当研究室の手法ではd0遷移金属をBサイトにもつペロブスカイト合成や酸塩基触媒作用には適用できませんでした。今回、相原さんが中心となってSrTiO3ナノ粒子の合成とシアノシリル化反応へと展開しました。どちかというと直感型の研究者である私が言うとりとめのないアイデアを、丁寧な実験と緻密な固体表面分析により、しっかりとした研究成果としてまとめてくれました。一緒に実験をしてくれた学生の青木君も含め、研究室メンバーの努力なくしては達成できなかったと思っています。複合酸化物の表面構造と触媒性能の関係には、まだまだわからないことがいっぱいあります。今後も、多様な物質・反応展開を目指すと共に、いろんな研究背景をもつ若手研究者と共に新しい無機合成化学・触媒化学の分野を開拓していけたらと思っています!

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

今回我々の研究グループでは、簡便な手順で高純度・高比表面積なペロブスカイト酸化物の合成に成功、ならびにそれらが液相の酸・塩基反応に対して高い触媒活性を示すことを見出しました。

ペロブスカイト酸化物は、有機物の完全酸化や自動車排ガスの浄化など、有毒ガスの無害化触媒としてよく利用される材料です。ペロブスカイト酸化物の合成法についていくつかの有効な手法が知られていますが、得られる材料の純度は高いが比表面積が小さい、または比表面積は大きいが不純物が多く手順が煩雑、などいずれも一長一短であり、液相の有機反応への利用はあまり多くはありませんでした。

そこで我々は、水溶性金属前駆体の使用ならびに熱処理時の雰囲気制御に着目し、”原料を水に溶かし、混ぜて、窒素と空気で焼く” といった非常にシンプルな手順で、高い純度と比表面積を兼ね備えたペロブスカイト酸化物の合成に成功しました (図1)。得られた材料の中でもチタン酸ストロンチウム (SrTiO3) の比表面積は、46 m2g–1と算出され、これは市販品の10倍以上の値でした。これに伴い、酸もしくは塩基で促進されることが知られているシアノシリル化反応に対するSrTiO3の触媒性能は、飛躍的に向上、その効率は従来の固体触媒よりも高いことを見出しました (図2)。

本成果はオープンアクセスです。どなたでも論文をダウンロードできますので、ぜひご覧ください!

図1.高純度・高比表面積SrTiO3の合成.

図2.シアノヒドリン合成における触媒の性能比較.

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

特に思い入れがある実験は、赤外分光法や昇温脱離法を用いた酸・塩基性質のキャラクタリゼーションです。もともと学生の頃から固体酸・塩基を専門にしており、そこで培った技術を存分に発揮できた検討でした。また、酸・塩基の検討から予想していた反応メカニズムをサポートするような結果が、被毒実験からも得られました。キャラクタリゼーションと反応結果、両方から矛盾のないメカニズムを提案できたことは、非常に良かった点です。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

“窒素処理” というアプローチに辿り着くまでの道のりが一番長かったと記憶しています。この処理方法に至るまでは、高純度なSrTiO3の合成には成功していたものの、比表面積と触媒活性は高くも低くもなく、触媒材料としてはイマイチな状態でした。そんな中、前駆体の熱重量測定を行うと、装置の温度制御を振り切るほど大きな発熱が観測されることに気づきました。このことと、鎌田先生の「不活性ガス雰囲気で処理すればいいのでは」というアドバイスを受け実際に試してみると、比表面積と触媒活性が大きく向上しました。実験手順としては、電気炉に繋がるガスのチューブを窒素から空気に繋ぎかえるだけなのですが、10秒にも満たないこのひと手間が本研究のミソになっています。

Q4. 将来は化学とどう関わっていきたいですか?

今回、高純度で高表面積なペロブスカイト酸化物を合成する簡便な手法を開発したことで、これまであまり注目されてこなかった材料が実は優れていると判明したり、従来材料のさらなる高機能化が見込まれます。また高機能材料を開発した際には、その理由を科学的な根拠に基づき提案することが必須であると思います。材料合成と反応解明、2つの結果をフィードバックし合うことで、より高性能な触媒の開発や高難度な反応の達成にチャレンジし、既存のプロセスの低コスト化や環境負荷の低減の一端を担えたら、と考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

研究活動において、良い結果が出続けることはまず無いと思います。そんな時は、コーヒーを飲んで一息ついたり、愛猫とじゃれ合ったり、気分転換が必要だと思います。すると頭の中のモヤモヤが晴れ、これまで見落としていた解決の糸口をつかめるかもしれません。さらに実験系の研究者の場合、いくら頭の中で考えても、手を動かさなければ実験結果は出てきません。難しいことは考えず、迷ったらとりあえずやってみるなど、直感に頼ってみてはいかがでしょう。残念ながら私の場合は、うまくいかないことの方が多いですが、その分、新しい現象を発見したり良い反応結果が得られた時には、これまでにない達成感が得られます。

最後になりますが、一緒にペロブスカイト酸化物の合成を行ってくれた青木くん、踏み込んだディスカッションを行い、かつ不自由無い研究環境を与えて頂いた鎌田教授と原教授には、この場を借りて感謝申し上げます。DFT計算では、東北大学の熊谷教授と清原助教に大変お世話になりました、御礼申し上げます。また、研究者ならだれもが1度は目にしたことがあるChem-Stationにおいて、研究紹介の機会を与えてくださったスタッフの方々には、深く感謝しております。ありがとうございました。

研究者の略歴

名前:相原健司(あいはら たけし)

所属:東京工業大学 科学技術創成研究院 フロンティア材料研究所 鎌田研究室

研究テーマ:固体酸・塩基触媒の開発と有機反応への応用

略歴

2021年3月 東京都立大学 都市環境科学研究科 環境応用化学域 博士課程修了

2020年4月–2021年3月 特別研究員DC2

2021年4月–2023年3月 東京工業大学 科学技術創成研究院 フロンティア材料研究所 原・鎌田研究室 博士研究員

2023年4月–現在 東京工業大学 科学技術創成研究院 フロンティア材料研究所 鎌田研究室 助教

関連リンク

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 米国へ講演旅行へ行ってきました:Part III
  2. ランシラクトンCの全合成と構造改訂-ペリ環状反応を駆使して-
  3. 科学は探究心を与え続けてくれるもの:2016 ロレアル–ユネスコ…
  4. アカデミックから民間企業へ転職について考えてみる 第三回
  5. 計算化学:DFT計算って何?Part II
  6. 求電子剤側で不斉を制御したアミノメチル化反応
  7. 有機合成化学協会誌2019年9月号:炭素–水素結合ケイ素化・脱フ…
  8. -ハロゲン化アルキル合成に光あれ-光酸化還元/コバルト協働触媒系…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. NMR in Organometallic Chemistry
  2. N-ヨードサッカリン:N-Iodosaccharin
  3. 機械的力で Cu(I) 錯体の発光強度を制御する
  4. トリ(2-フリル)ホスフィン:Tri(2-furyl)phosphine
  5. 伊藤 幸裕 Yukihiro Itoh
  6. 実験器具・設備の価格を知っておきましょう
  7. 繊維強化プラスチックの耐衝撃性を凌ぐゴム材料を開発
  8. 世界初 もみ殻からLEDを開発!~オレンジ色に発光するシリコン量子ドットLED~
  9. REACH/RoHS関連法案の最新動向【終了】
  10. スズアセタールを用いる選択的変換 Selective Transformation with Tin Acetal

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年6月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

カルベン転移反応 ~フラスコ内での反応を生体内へ~

有機化学を履修したことのある方は、ほとんど全員と言っても過言でもないほどカルベンについて教科書で習っ…

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

【5月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 有機金属化合物 オルガチックスによる「密着性向上効果の発現(プライマー)」

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2024/05/15 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

分子は基板表面で「寝返り」をうつ!「一時停止」蒸着法で自発分極の制御自在

第613回のスポットライトリサーチは、千葉大学 石井久夫研究室の大原 正裕(おおはら まさひろ)さん…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP