[スポンサーリンク]

化学者のつぶやき

嫌気性コリン代謝阻害剤の開発

[スポンサーリンク]

嫌気性コリン代謝を選択的に阻害する小分子が開発された。これは、嫌気性微生物の代謝による疾患のメカニズム解明の大きな一歩となる。

嫌気性コリン代謝

ヒトの腸内に生息する微生物は疾患に関与する様々な分子を生産している[1]。しかし、どの分子が特定の疾患をどのように引き起こすかを明らかにすることが挑戦的な課題とされている。この課題に対し、各分子を産出する微生物がもつ酵素を選択的に阻害する低分子の開発研究が求められている。

 今回紹介するBalskus教授らはこれまで、多くの腸内嫌気性微生物によって炭素源およびエネルギー源として利用されるコリンに着目して研究をしてきた。嫌気性微生物の働きにより、コリンはトリメチルアミン(TMA)に分解され、さらに肝臓でトリメチルアミンNオキシド(TMAO)となることで排泄される(1A)TMAOがヒトの血漿中で増加すると、非アルコール性脂肪性肝炎や循環器疾患、糖尿病など重大疾患を促進することが知られている[2]。これまでにBalskusらは、グリシルラジカル酵素TMAリアーゼ(CutC)とラジカルSAM活性化酵素(CutD)の働きによりコリンが分解されることを明らかにしている(1B)。具体的には、CutDによる翻訳後修飾によってCutCがグリシルラジカルを生成し、隣接するシステインから水素を引き抜き、チイルラジカルが生じる。その後、チイルラジカルがコリンの水酸基α位水素を引き抜き、続くCN結合切断を起こすことでTMAが生成することがわかっている(1C)。これまでに、嫌気性コリン代謝を制御する小分子の研究が行われており、3,3-ジメチルブタノール(DMB)が嫌気コリン代謝を阻害することがWangらによって報告されている(1D)[3]

 今回、Balskusらは、コリンに構造が類似する種々のアナログ体を合成し、CutCを選択的に阻害する小分子の開発に成功した(1D)[4]

図1. (A) コリンの分解物、(B) CutCとコリンの共結晶X線結晶構造、(C) コリン分解機構 (D) 小分子コリン代謝阻害剤

Structure-Guided Identification of a Small Molecule That Inhibits Anaerobic Choline Metabolism by Human Gut Bacteria

Orman, M.; Bodea, S.; Funk, M. A.; Martínez-del Campo, A.; Bollenbach, M.; Drennan, C. L.; Balskus, E. P. J. Am. Chem. Soc. 2019,141, 33.

DOI: 10.1021/jacs.8b04883

論文著者の紹介

研究者:Emily P. Balskus

研究者の経歴:
-2002 B.A. with Highest Honors in Chemistry, summa cum laude, valedictorian, Williams College (Prof. Thomas E. Smith)
2002-2003 M.Phil. in Chemistry, University of Cambridge (Prof. Steven V. Ley)
2003-2008 Ph.D, Harvard University (Prof. Eric N. Jacobsen)
2008-2011 NIH NRSA Postdoctoral Fellow, Harvard Medical School(Prof. Christopher T. Walsh)
2011-2015 Assistant Professor, Harvard University
2015-2018 Morris Kahn Associate Professor, Harvard University
2018-Professor, Harvard University

研究内容:ヒト細菌の理解を志向したケミカルバイオロジー、Biocompatible Chemistry

論文の概要

著者らはまず、大腸菌MS 200-1を用いて、コリン類似体による嫌気性コリン代謝の阻害について試験を行い、高活性の小分子を探索した結果、ベタインアルデヒド(BA)がよい阻害活性をもつことがわかった(2A)。そこで、高活性であったBAによる嫌気性コリン代謝阻害のメカニズムを解明するため、種々の実験を行った。CutCBAとの共結晶のX線結晶構造解析に成功し、CutC活性部位とBAの会合状態が明らかになった(2B)CutCCys489残基とアルデヒドの間に共有結合を形成している以外は、CutCとコリンとの会合状態と酷似している(2B)

 次に、炭素源としてコリンまたはグリセロールを含む培地、もしくはBHI(ブレインハートインフュージョン培地)上で培養した3種の大腸菌(MS 69-1)に対し、BAを作用させ、大腸菌の増殖を観察した。その結果、グリセロールを含む培地と、BHI上ではBAは大腸菌の増殖に影響せず、コリン含有培地で培養した大腸菌のみ増殖が抑制された。また、CutC発現遺伝子をもつ様々な細菌においてもBAによる嫌気性コリン代謝の阻害も確認できた。これらの結果は、BAが嫌気性コリン代謝を標的とし、CutCを選択的に阻害していることを示唆する。一方で、以前報告されたDMBは、in vitroや大腸菌において嫌気性コリン代謝におけるCutC阻害を直接標的としていないことがわかった。

図2. (A) 阻害剤BAの発見とその阻害活性 (B) CutCと阻害剤の共結晶X線結晶構造 (C) CutC酵素をもつ種々の細菌に対する阻害剤の効果

以上、CutCを選択的に阻害する小分子が開発された。今後、疾患のメカニズム解明の分子ツールとして期待される。

参考文献

  1. (a) Sharon, G.; Garg, N.; Debelius, J.; Knight, R.; Dorrestein, P. C.; Mazmanian, S. K. Cell Metab.2014, 20, 719. DOI: 1016/j.cmet.2014.10.016(b)Postler, T. S.; Ghosh, S. Cell Metab.2017, 26, 110. DOI: 10.1016/j.cmet.2017.05.008
  2. (a) Dumas, M. E.; Barton, R. H.; Toye, A.; Cloarec, O.; Blancher, C.; Rothwell, A.; Fearnside, J.; Tatoud, R.; Blanc, V.; Lindon, J. C.; Mitchell, S. C.; Holmes, E.; McCarthy, M. I.; Scott, J.; Gauguier, D.; Nicholson, J. K. Natl. Acad. Sci. U. S. A. 2006, 103, 12511. DOI: 10.1073/pnas.0601056103(b) Spencer, M. D.; Hamp, T. J.; Reid, R. W.; Fischer, L. M.; Zeisel, S. H.; Fodor, A. A. Gastroenterology2011, 140, 976. DOI:10.1053/j.gastro.2010.11.049(c) Wang, Z.; Klipfell, E.; Bennett, B. J.; Koeth, R.; Levison, B. S.; DuGar, B.; Feldstein, A. E.; Britt, E. B.; Fu, X.; Chung, Y.-M.; Wu, Y.; Schauer, P.; Smith, J. D.; Allayee, H.; Tang, W. H. W.; DiDonato, J. A.; Lusis, A. J.; Hazen, S. L. Nature2011, 472, 57. DOI: 10.1038/nature09922(d)Koeth, R. A.; Wang, Z.; Levison, B. S.; Buffa, J. A.; Org, E.; Sheehy, B. T.; Britt, E. B.; Fu, X.; Wu, Y.; Li, L.; Smith, J. D.; DiDonato, J. A.; Chen, J.; Li, H.; Wu, G. D.; Lewis, J. D.; Warrier, M.; Brown, J. M.; Krauss, R. M.; Tang, W. H. W.; Bushman, F. D.; Lusis, A. J.; Hazen, S. L. Nat. Med.2013, 19, 576. DOI: 10.1038/nm.3145(e) Tang, W. H. W.; Wang, Z.; Levison, B. S.; Koeth, R. A.; Britt, E. B.; Fu, X.; Wu, Y.; Hazen, S. L. N. Engl. J. Med. 2013, 368, 1575. DOI: 10.1056/NEJMoa1109400(f) Gregory, J. C.; Buffa, J. A.; Org, E.; Wang, Z.; Levison, B. S.; Zhu, W.; Wagner, M. A.; Bennett, B. J.; Li, L.; DiDonato, J. A.; Lusis, A. J.; Hazen, S. L. J. Biol. Chem. 2015, 290, 5647. DOI: 10.1074/jbc.M114.618249
  3. Wang, Z.; Roberts, A. B.; Buffa, J. A.; Levison, B. S.; Zhu, W.; Org, E.; Gu, X.; Huang, Y.; Zamanian-Daryoush, M.; Culley, M. K.; DiDonato, A. J.; Fu, X.; Hazen, J. E.; Krajcik, D.; DiDonato, J. A.; Lusis, A. J.; Hazen, S. L. Cell2015, 163, 1585. DOI: 1016/j.cell.2015.11.055
  4. 本論文査読中に、共有結合的にCutCを阻害する小分子が報告されている。Roberts, A. B.; Gu, X.; Buffa, J. A.; Hurd, A. G.; Wang, Z.; Zhu, W.; Gupta, N.; Skye, S. M.; Cody, D. ; Levison, B. S.; Barrington, W. T.; Russell, M. W.; Reed, J. M.; Duzan, A.; Lang, J. M.; Fu, X.; Li, L.; Myers, A. J.; Rachakonda, S.; DiDonato, J. A.; Brown, J. M.; Gogonea, V.; Lusis, A. J.; Garcia- Garcia, J. C.; Hazen, S. L. Nat. Med.2018, 24, 1407. DOI: 10.1038/s41591-018-0128-1
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. PCに眠る未採択申請書を活用して、外部資金を狙う新たな手法
  2. サイエンスアゴラの魅力-食用昆虫科学研究会・「蟲ソムリエ」中の人…
  3. 液晶の薬物キャリアとしての応用~体温付近で相転移する液晶高分子ミ…
  4. 製薬系企業研究者との懇談会
  5. (+)-Pleiocarpamineの全合成と新規酸化的カップリ…
  6. 「重曹でお掃除」の化学(その2)
  7. 第三回ケムステVシンポ「若手化学者、海外経験を語る」開催報告
  8. 不斉アリル位アルキル化反応を利用した有機合成

注目情報

ピックアップ記事

  1. 生体組織を人工ラベル化する「AGOX Chemistry」
  2. Post-Itのはなし ~吸盤ではない 2~
  3. グアニジニウム/次亜ヨウ素酸塩触媒によるオキシインドール類の立体選択的な酸化的カップリング反応
  4. タウリン捕まえた!カゴの中の鳥にパイ電子雲がタッチ
  5. 高圧ガス甲種化学 受験体験記① ~概要・申し込み~
  6. 114番元素と116番元素が正式認可される
  7. 神経変性疾患関連凝集タンパク質分解誘導剤の開発
  8. 化学系スタートアップ2社の代表が語る、事業の未来〜業界の可能性と働き方のリアルとは〜
  9. 汝ペーハーと読むなかれ
  10. 【無料】化学英語辞書がバージョンアップ!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年3月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP