[スポンサーリンク]

化学者のつぶやき

嫌気性コリン代謝阻害剤の開発

[スポンサーリンク]

嫌気性コリン代謝を選択的に阻害する小分子が開発された。これは、嫌気性微生物の代謝による疾患のメカニズム解明の大きな一歩となる。

嫌気性コリン代謝

ヒトの腸内に生息する微生物は疾患に関与する様々な分子を生産している[1]。しかし、どの分子が特定の疾患をどのように引き起こすかを明らかにすることが挑戦的な課題とされている。この課題に対し、各分子を産出する微生物がもつ酵素を選択的に阻害する低分子の開発研究が求められている。

 今回紹介するBalskus教授らはこれまで、多くの腸内嫌気性微生物によって炭素源およびエネルギー源として利用されるコリンに着目して研究をしてきた。嫌気性微生物の働きにより、コリンはトリメチルアミン(TMA)に分解され、さらに肝臓でトリメチルアミンNオキシド(TMAO)となることで排泄される(1A)TMAOがヒトの血漿中で増加すると、非アルコール性脂肪性肝炎や循環器疾患、糖尿病など重大疾患を促進することが知られている[2]。これまでにBalskusらは、グリシルラジカル酵素TMAリアーゼ(CutC)とラジカルSAM活性化酵素(CutD)の働きによりコリンが分解されることを明らかにしている(1B)。具体的には、CutDによる翻訳後修飾によってCutCがグリシルラジカルを生成し、隣接するシステインから水素を引き抜き、チイルラジカルが生じる。その後、チイルラジカルがコリンの水酸基α位水素を引き抜き、続くCN結合切断を起こすことでTMAが生成することがわかっている(1C)。これまでに、嫌気性コリン代謝を制御する小分子の研究が行われており、3,3-ジメチルブタノール(DMB)が嫌気コリン代謝を阻害することがWangらによって報告されている(1D)[3]

 今回、Balskusらは、コリンに構造が類似する種々のアナログ体を合成し、CutCを選択的に阻害する小分子の開発に成功した(1D)[4]

図1. (A) コリンの分解物、(B) CutCとコリンの共結晶X線結晶構造、(C) コリン分解機構 (D) 小分子コリン代謝阻害剤

Structure-Guided Identification of a Small Molecule That Inhibits Anaerobic Choline Metabolism by Human Gut Bacteria

Orman, M.; Bodea, S.; Funk, M. A.; Martínez-del Campo, A.; Bollenbach, M.; Drennan, C. L.; Balskus, E. P. J. Am. Chem. Soc. 2019,141, 33.

DOI: 10.1021/jacs.8b04883

論文著者の紹介

研究者:Emily P. Balskus

研究者の経歴:
-2002 B.A. with Highest Honors in Chemistry, summa cum laude, valedictorian, Williams College (Prof. Thomas E. Smith)
2002-2003 M.Phil. in Chemistry, University of Cambridge (Prof. Steven V. Ley)
2003-2008 Ph.D, Harvard University (Prof. Eric N. Jacobsen)
2008-2011 NIH NRSA Postdoctoral Fellow, Harvard Medical School(Prof. Christopher T. Walsh)
2011-2015 Assistant Professor, Harvard University
2015-2018 Morris Kahn Associate Professor, Harvard University
2018-Professor, Harvard University

研究内容:ヒト細菌の理解を志向したケミカルバイオロジー、Biocompatible Chemistry

論文の概要

著者らはまず、大腸菌MS 200-1を用いて、コリン類似体による嫌気性コリン代謝の阻害について試験を行い、高活性の小分子を探索した結果、ベタインアルデヒド(BA)がよい阻害活性をもつことがわかった(2A)。そこで、高活性であったBAによる嫌気性コリン代謝阻害のメカニズムを解明するため、種々の実験を行った。CutCBAとの共結晶のX線結晶構造解析に成功し、CutC活性部位とBAの会合状態が明らかになった(2B)CutCCys489残基とアルデヒドの間に共有結合を形成している以外は、CutCとコリンとの会合状態と酷似している(2B)

 次に、炭素源としてコリンまたはグリセロールを含む培地、もしくはBHI(ブレインハートインフュージョン培地)上で培養した3種の大腸菌(MS 69-1)に対し、BAを作用させ、大腸菌の増殖を観察した。その結果、グリセロールを含む培地と、BHI上ではBAは大腸菌の増殖に影響せず、コリン含有培地で培養した大腸菌のみ増殖が抑制された。また、CutC発現遺伝子をもつ様々な細菌においてもBAによる嫌気性コリン代謝の阻害も確認できた。これらの結果は、BAが嫌気性コリン代謝を標的とし、CutCを選択的に阻害していることを示唆する。一方で、以前報告されたDMBは、in vitroや大腸菌において嫌気性コリン代謝におけるCutC阻害を直接標的としていないことがわかった。

図2. (A) 阻害剤BAの発見とその阻害活性 (B) CutCと阻害剤の共結晶X線結晶構造 (C) CutC酵素をもつ種々の細菌に対する阻害剤の効果

以上、CutCを選択的に阻害する小分子が開発された。今後、疾患のメカニズム解明の分子ツールとして期待される。

参考文献

  1. (a) Sharon, G.; Garg, N.; Debelius, J.; Knight, R.; Dorrestein, P. C.; Mazmanian, S. K. Cell Metab.2014, 20, 719. DOI: 1016/j.cmet.2014.10.016(b)Postler, T. S.; Ghosh, S. Cell Metab.2017, 26, 110. DOI: 10.1016/j.cmet.2017.05.008
  2. (a) Dumas, M. E.; Barton, R. H.; Toye, A.; Cloarec, O.; Blancher, C.; Rothwell, A.; Fearnside, J.; Tatoud, R.; Blanc, V.; Lindon, J. C.; Mitchell, S. C.; Holmes, E.; McCarthy, M. I.; Scott, J.; Gauguier, D.; Nicholson, J. K. Natl. Acad. Sci. U. S. A. 2006, 103, 12511. DOI: 10.1073/pnas.0601056103(b) Spencer, M. D.; Hamp, T. J.; Reid, R. W.; Fischer, L. M.; Zeisel, S. H.; Fodor, A. A. Gastroenterology2011, 140, 976. DOI:10.1053/j.gastro.2010.11.049(c) Wang, Z.; Klipfell, E.; Bennett, B. J.; Koeth, R.; Levison, B. S.; DuGar, B.; Feldstein, A. E.; Britt, E. B.; Fu, X.; Chung, Y.-M.; Wu, Y.; Schauer, P.; Smith, J. D.; Allayee, H.; Tang, W. H. W.; DiDonato, J. A.; Lusis, A. J.; Hazen, S. L. Nature2011, 472, 57. DOI: 10.1038/nature09922(d)Koeth, R. A.; Wang, Z.; Levison, B. S.; Buffa, J. A.; Org, E.; Sheehy, B. T.; Britt, E. B.; Fu, X.; Wu, Y.; Li, L.; Smith, J. D.; DiDonato, J. A.; Chen, J.; Li, H.; Wu, G. D.; Lewis, J. D.; Warrier, M.; Brown, J. M.; Krauss, R. M.; Tang, W. H. W.; Bushman, F. D.; Lusis, A. J.; Hazen, S. L. Nat. Med.2013, 19, 576. DOI: 10.1038/nm.3145(e) Tang, W. H. W.; Wang, Z.; Levison, B. S.; Koeth, R. A.; Britt, E. B.; Fu, X.; Wu, Y.; Hazen, S. L. N. Engl. J. Med. 2013, 368, 1575. DOI: 10.1056/NEJMoa1109400(f) Gregory, J. C.; Buffa, J. A.; Org, E.; Wang, Z.; Levison, B. S.; Zhu, W.; Wagner, M. A.; Bennett, B. J.; Li, L.; DiDonato, J. A.; Lusis, A. J.; Hazen, S. L. J. Biol. Chem. 2015, 290, 5647. DOI: 10.1074/jbc.M114.618249
  3. Wang, Z.; Roberts, A. B.; Buffa, J. A.; Levison, B. S.; Zhu, W.; Org, E.; Gu, X.; Huang, Y.; Zamanian-Daryoush, M.; Culley, M. K.; DiDonato, A. J.; Fu, X.; Hazen, J. E.; Krajcik, D.; DiDonato, J. A.; Lusis, A. J.; Hazen, S. L. Cell2015, 163, 1585. DOI: 1016/j.cell.2015.11.055
  4. 本論文査読中に、共有結合的にCutCを阻害する小分子が報告されている。Roberts, A. B.; Gu, X.; Buffa, J. A.; Hurd, A. G.; Wang, Z.; Zhu, W.; Gupta, N.; Skye, S. M.; Cody, D. ; Levison, B. S.; Barrington, W. T.; Russell, M. W.; Reed, J. M.; Duzan, A.; Lang, J. M.; Fu, X.; Li, L.; Myers, A. J.; Rachakonda, S.; DiDonato, J. A.; Brown, J. M.; Gogonea, V.; Lusis, A. J.; Garcia- Garcia, J. C.; Hazen, S. L. Nat. Med.2018, 24, 1407. DOI: 10.1038/s41591-018-0128-1
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 新人化学者の失敗ランキング
  2. 地球外生命体を化学する
  3. 炭素をつなげる王道反応:アルドール反応 (5/最終回)
  4. NIMSの「新しいウェブサイト」が熱い!
  5. むずかしいことば?
  6. 2013年ノーベル化学賞は誰の手に?トムソンロイター版
  7. ベンゼン環が速く・キレイに描けるルーズリーフ
  8. comparing with (to)の使い方

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. JSRとはどんな会社?-1
  2. エッシェンモーザー・クライゼン転位 Eschenmoser-Claisen Rearrangement
  3. 2011年イグノーベル賞決定!「わさび警報装置」
  4. 第30回 弱い相互作用を活用した高分子材料創製―Marcus Weck教授
  5. Greene’s Protective Groups in Organic Synthesis
  6. トンネル効果が支配する有機化学反応
  7. 2001年ノーベル化学賞『キラル触媒を用いる不斉水素化および酸化反応の開発』
  8. 使い方次第で猛毒、薬に
  9. 赤外光で分子の結合を切る!
  10. 疑惑の論文200本発見 米大が盗作探知プログラム開発

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

三角形ラジカルを使って発光性2次元ハニカムスピン格子構造を組み立てる!

第309回のスポットライトリサーチは、木村舜 博士にお願いしました。金属と有機配位子がネット…

第148回―「フッ素に関わる遷移金属錯体の研究」Graham Saunders准教授

第148回の海外化学者インタビューは、グラハム・サウンダース准教授です。ニュージーランドのハミルトン…

ケムステチャンネルをチャンネル登録しませんか?

5月11日で化学の情報サイトケムステは開設21周年を迎えます。これまで記事中心の活動を行ってきました…

化学研究で役に立つデータ解析入門:回帰分析の活用を広げる編

前回の化学研究で役に立つデータ解析入門:回帰分析の応用編では、Rを使ってエクセルにはできない回帰分析…

いろんなカタチの撹拌子を試してみた

大好評、「試してみた」シリーズの第5弾。今回は様々な化合物を反応させる際に必須な撹拌子(回転…

【マイクロ波化学(株)医薬分野向けウェビナー】 #ペプチド #核酸 #有機合成 #凍結乾燥 第3のエネルギーがプロセスと製品を変える  マイクロ波適用例とスケールアップ

<内容>本イベントは、医薬分野向けに事業・開発課題のソリューションとして、マイクロ波の適用例や効…

バイオマスからブタジエンを生成する新技術を共同開発

日本ゼオンは、理研、横浜ゴムと共同で設置している「バイオモノマー生産研究チーム」の研究により、バイオ…

【ケムステSlackに訊いてみた②】化学者に数学は必要なのか?

日本初のオープン化学コミュニティ・ケムステSlackの質問チャンネルに流れてきたQ&Aの紹介…

Chem-Station Twitter

PAGE TOP