[スポンサーリンク]

化学者のつぶやき

嫌気性コリン代謝阻害剤の開発

[スポンサーリンク]

嫌気性コリン代謝を選択的に阻害する小分子が開発された。これは、嫌気性微生物の代謝による疾患のメカニズム解明の大きな一歩となる。

嫌気性コリン代謝

ヒトの腸内に生息する微生物は疾患に関与する様々な分子を生産している[1]。しかし、どの分子が特定の疾患をどのように引き起こすかを明らかにすることが挑戦的な課題とされている。この課題に対し、各分子を産出する微生物がもつ酵素を選択的に阻害する低分子の開発研究が求められている。

 今回紹介するBalskus教授らはこれまで、多くの腸内嫌気性微生物によって炭素源およびエネルギー源として利用されるコリンに着目して研究をしてきた。嫌気性微生物の働きにより、コリンはトリメチルアミン(TMA)に分解され、さらに肝臓でトリメチルアミンNオキシド(TMAO)となることで排泄される(1A)TMAOがヒトの血漿中で増加すると、非アルコール性脂肪性肝炎や循環器疾患、糖尿病など重大疾患を促進することが知られている[2]。これまでにBalskusらは、グリシルラジカル酵素TMAリアーゼ(CutC)とラジカルSAM活性化酵素(CutD)の働きによりコリンが分解されることを明らかにしている(1B)。具体的には、CutDによる翻訳後修飾によってCutCがグリシルラジカルを生成し、隣接するシステインから水素を引き抜き、チイルラジカルが生じる。その後、チイルラジカルがコリンの水酸基α位水素を引き抜き、続くCN結合切断を起こすことでTMAが生成することがわかっている(1C)。これまでに、嫌気性コリン代謝を制御する小分子の研究が行われており、3,3-ジメチルブタノール(DMB)が嫌気コリン代謝を阻害することがWangらによって報告されている(1D)[3]

 今回、Balskusらは、コリンに構造が類似する種々のアナログ体を合成し、CutCを選択的に阻害する小分子の開発に成功した(1D)[4]

図1. (A) コリンの分解物、(B) CutCとコリンの共結晶X線結晶構造、(C) コリン分解機構 (D) 小分子コリン代謝阻害剤

Structure-Guided Identification of a Small Molecule That Inhibits Anaerobic Choline Metabolism by Human Gut Bacteria

Orman, M.; Bodea, S.; Funk, M. A.; Martínez-del Campo, A.; Bollenbach, M.; Drennan, C. L.; Balskus, E. P. J. Am. Chem. Soc. 2019,141, 33.

DOI: 10.1021/jacs.8b04883

論文著者の紹介

研究者:Emily P. Balskus

研究者の経歴:
-2002 B.A. with Highest Honors in Chemistry, summa cum laude, valedictorian, Williams College (Prof. Thomas E. Smith)
2002-2003 M.Phil. in Chemistry, University of Cambridge (Prof. Steven V. Ley)
2003-2008 Ph.D, Harvard University (Prof. Eric N. Jacobsen)
2008-2011 NIH NRSA Postdoctoral Fellow, Harvard Medical School(Prof. Christopher T. Walsh)
2011-2015 Assistant Professor, Harvard University
2015-2018 Morris Kahn Associate Professor, Harvard University
2018-Professor, Harvard University

研究内容:ヒト細菌の理解を志向したケミカルバイオロジー、Biocompatible Chemistry

論文の概要

著者らはまず、大腸菌MS 200-1を用いて、コリン類似体による嫌気性コリン代謝の阻害について試験を行い、高活性の小分子を探索した結果、ベタインアルデヒド(BA)がよい阻害活性をもつことがわかった(2A)。そこで、高活性であったBAによる嫌気性コリン代謝阻害のメカニズムを解明するため、種々の実験を行った。CutCBAとの共結晶のX線結晶構造解析に成功し、CutC活性部位とBAの会合状態が明らかになった(2B)CutCCys489残基とアルデヒドの間に共有結合を形成している以外は、CutCとコリンとの会合状態と酷似している(2B)

 次に、炭素源としてコリンまたはグリセロールを含む培地、もしくはBHI(ブレインハートインフュージョン培地)上で培養した3種の大腸菌(MS 69-1)に対し、BAを作用させ、大腸菌の増殖を観察した。その結果、グリセロールを含む培地と、BHI上ではBAは大腸菌の増殖に影響せず、コリン含有培地で培養した大腸菌のみ増殖が抑制された。また、CutC発現遺伝子をもつ様々な細菌においてもBAによる嫌気性コリン代謝の阻害も確認できた。これらの結果は、BAが嫌気性コリン代謝を標的とし、CutCを選択的に阻害していることを示唆する。一方で、以前報告されたDMBは、in vitroや大腸菌において嫌気性コリン代謝におけるCutC阻害を直接標的としていないことがわかった。

図2. (A) 阻害剤BAの発見とその阻害活性 (B) CutCと阻害剤の共結晶X線結晶構造 (C) CutC酵素をもつ種々の細菌に対する阻害剤の効果

以上、CutCを選択的に阻害する小分子が開発された。今後、疾患のメカニズム解明の分子ツールとして期待される。

参考文献

  1. (a) Sharon, G.; Garg, N.; Debelius, J.; Knight, R.; Dorrestein, P. C.; Mazmanian, S. K. Cell Metab.2014, 20, 719. DOI: 1016/j.cmet.2014.10.016(b)Postler, T. S.; Ghosh, S. Cell Metab.2017, 26, 110. DOI: 10.1016/j.cmet.2017.05.008
  2. (a) Dumas, M. E.; Barton, R. H.; Toye, A.; Cloarec, O.; Blancher, C.; Rothwell, A.; Fearnside, J.; Tatoud, R.; Blanc, V.; Lindon, J. C.; Mitchell, S. C.; Holmes, E.; McCarthy, M. I.; Scott, J.; Gauguier, D.; Nicholson, J. K. Natl. Acad. Sci. U. S. A. 2006, 103, 12511. DOI: 10.1073/pnas.0601056103(b) Spencer, M. D.; Hamp, T. J.; Reid, R. W.; Fischer, L. M.; Zeisel, S. H.; Fodor, A. A. Gastroenterology2011, 140, 976. DOI:10.1053/j.gastro.2010.11.049(c) Wang, Z.; Klipfell, E.; Bennett, B. J.; Koeth, R.; Levison, B. S.; DuGar, B.; Feldstein, A. E.; Britt, E. B.; Fu, X.; Chung, Y.-M.; Wu, Y.; Schauer, P.; Smith, J. D.; Allayee, H.; Tang, W. H. W.; DiDonato, J. A.; Lusis, A. J.; Hazen, S. L. Nature2011, 472, 57. DOI: 10.1038/nature09922(d)Koeth, R. A.; Wang, Z.; Levison, B. S.; Buffa, J. A.; Org, E.; Sheehy, B. T.; Britt, E. B.; Fu, X.; Wu, Y.; Li, L.; Smith, J. D.; DiDonato, J. A.; Chen, J.; Li, H.; Wu, G. D.; Lewis, J. D.; Warrier, M.; Brown, J. M.; Krauss, R. M.; Tang, W. H. W.; Bushman, F. D.; Lusis, A. J.; Hazen, S. L. Nat. Med.2013, 19, 576. DOI: 10.1038/nm.3145(e) Tang, W. H. W.; Wang, Z.; Levison, B. S.; Koeth, R. A.; Britt, E. B.; Fu, X.; Wu, Y.; Hazen, S. L. N. Engl. J. Med. 2013, 368, 1575. DOI: 10.1056/NEJMoa1109400(f) Gregory, J. C.; Buffa, J. A.; Org, E.; Wang, Z.; Levison, B. S.; Zhu, W.; Wagner, M. A.; Bennett, B. J.; Li, L.; DiDonato, J. A.; Lusis, A. J.; Hazen, S. L. J. Biol. Chem. 2015, 290, 5647. DOI: 10.1074/jbc.M114.618249
  3. Wang, Z.; Roberts, A. B.; Buffa, J. A.; Levison, B. S.; Zhu, W.; Org, E.; Gu, X.; Huang, Y.; Zamanian-Daryoush, M.; Culley, M. K.; DiDonato, A. J.; Fu, X.; Hazen, J. E.; Krajcik, D.; DiDonato, J. A.; Lusis, A. J.; Hazen, S. L. Cell2015, 163, 1585. DOI: 1016/j.cell.2015.11.055
  4. 本論文査読中に、共有結合的にCutCを阻害する小分子が報告されている。Roberts, A. B.; Gu, X.; Buffa, J. A.; Hurd, A. G.; Wang, Z.; Zhu, W.; Gupta, N.; Skye, S. M.; Cody, D. ; Levison, B. S.; Barrington, W. T.; Russell, M. W.; Reed, J. M.; Duzan, A.; Lang, J. M.; Fu, X.; Li, L.; Myers, A. J.; Rachakonda, S.; DiDonato, J. A.; Brown, J. M.; Gogonea, V.; Lusis, A. J.; Garcia- Garcia, J. C.; Hazen, S. L. Nat. Med.2018, 24, 1407. DOI: 10.1038/s41591-018-0128-1
山口 研究室

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. オープンアクセス論文が半数突破か
  2. 書物から学ぶ有機化学 2
  3. 論文執筆&出版を学ぶポータルサイト
  4. ここまでできる!?「DNA折り紙」の最先端 ② ~巨大な平面構造…
  5. まっすぐなペプチドがつまらないなら「さあ輪になって踊ろ!」
  6. 目指せ!フェロモンでリア充生活
  7. シュプリンガー・ネイチャーより 化学会・薬学会年会が中止になりガ…
  8. アズレンの蒼い旅路

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Part II
  2. ラッセル・コックス Rusesl J. Cox
  3. XPhos
  4. 化学反応を起こせる?インタラクティブな元素周期表
  5. 結晶世界のウェイトリフティング
  6. ヒスチジン近傍選択的なタンパク質主鎖修飾法
  7. 化学構造式描画のスタンダードを学ぼう!【基本編】
  8. Small Molecule Medicinal Chemistry -Strategies and Technologies-
  9. 三井物と保土谷 多層カーボンナノチューブを量産
  10. ノーベル化学賞 Nobel Prize in Chemistry

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

研究テーマ変更奮闘記 – PhD留学(後編)

前回の記事では、私がPhD留学を始めた際のテーマ決めの流れや、その後テーマ変更を考え始めてからの教授…

ジョン・ケンドリュー John C. Kendrew

ジョン・コウデリー・ケンドリュー(John Cowdery Kendrew、1917年3月24日-1…

食品添加物はなぜ嫌われるのか: 食品情報を「正しく」読み解くリテラシー

(さらに…)…

第100回―「超分子包接による化学センシング」Yun-Bao Jiang教授

第100回の海外化学者インタビューは、Yun-Bao Jiang教授です。厦門大学化学科に所属し、電…

第七回ケムステVシンポジウム「有機合成化学の若い力」を開催します!

第5回のケムステVシンポもうすぐですね。そして、第6回からほとんど連続となりますが、第7回のケムステ…

「自分の意見を言える人」がしている3つのこと

コロナ禍の影響により、ここ数カ月はオンラインでの選考が増えている。先日、はじめてオンラインでの面接を…

ブルース・リプシュッツ Bruce H. Lipshutz

ブルース・リプシュッツ(Bruce H. Lipshutz, 1951–)はアメリカの有機化学者であ…

化学者のためのエレクトロニクス入門② ~電子回路の製造工程編~

bergです。さて、前回は日々微細化を遂げる電子回路の歴史についてご紹介しました。二回目の今回は、半…

Chem-Station Twitter

PAGE TOP