[スポンサーリンク]

化学者のつぶやき

有機光触媒を用いたポリマー合成

[スポンサーリンク]

ラジカル重合反応は、活性の高い中性のラジカル種を成長種とする重合反応です。この手法は、水中での反応が可能かつ低コストであるとして、工業で広く用いられています。しかしながら、通常のラジカル重合反応では

  1. 二個の成長ラジカルの結合により重合が停止する再結合反応
  2. 水素原子が一方の成長ラジカルで引き抜かれ、飽和末端基と不飽和末端基をもつ二個の高分子を生成する不均化反応

という二つの停止反応が存在し、これらがポリマーの成長が停止することでポリマーの分子量が不均一になってしまいます(図 1)。ポリマーの分子量分布はその物性に大きく影響するため、より均質な分子量分布を与える重合反応が求められています。

2016-08-15_03-06-51

図1. (1)再結合反応 (2)不均化反応

 

原子移動ラジカル重合(ATRP)

上述の問題点を解決する手法として、1995年、 Matyjaszewskiら、澤本らによって原子移動ラジカル重合(ATRP)法が提唱された[1]。この方法は、ハロゲン金属錯体と有機ハロゲン化物をラジカル開始剤として用いることで、成長種の末端ラジカルに開始剤のハロゲンがキャップされたドーマント種が生成されることを利用しています。この時、成長種とドーマント種は平衡状態となり、平衡はドーマント種に偏る。そのため系中の成長種の濃度が低くなり、副反応である停止反応が抑制されます。すなわち本手法を用いることで、長鎖で、分子量のばらつきが小さいポリマーを合成することが可能となります[4](図 2)。

2016-08-15_03-15-38

 

従来のATRP法では金属触媒が用いられてきましたが、生成されたポリマーを電子材料や生物医学などに使用する際には金属を用いないポリマー合成法が好まれます。そこで近年、金属触媒の代替として有機光触媒を用いるATRP法(O-ATRP法)が精力的に研究されてきました。理想的なポリマー合成法では狭い分子量分布と高い重合度をもつポリマーを収率よく合成する必要があり、なおかつ自在にその分子量を制御できることが望まれます。現在までに開発されているO-ATRP法はわずか3例であり、上述の条件をすべて満たすものはありませんでした(図 3)[5]

2016-08-15_03-16-24

図3. 有機光触媒を用いるATRP法(O-ATRP法)

 

しかし最近、米国コロラド大学ボルダー校のMiyakeらは、5,10-ジフェニル-5,10-ジヒドロフェナジン誘導体を有機光触媒として用いることで、可視光照射下、室温で、D = 1.10と分子量のばらつきが非常に小さいポリマーの合成に成功しScience誌に報告しました。

“Organocatalyzed atom transfer radical polymerization driven by visible light”

Theriot, J. C.; Lim, C.-H.; Yang, H.; Ryan, M. D.; Musgrave, C. B.; Miyake, G. M. Science 2016, 352, 1082. DOI: 10.1126/science.aaf3935

 

有機光触媒を用いたラジカル重合反応の反応機構

本反応の反応機構を以下に示します(図4)。

  1. 可視光照射によって有機光触媒が1重項励起状態(1PC*)に励起され、続く項間交差(ISC)を経て3重項励起状態(3PC*)となる
  2. ドーマント種への一電子移動を伴ってラジカルカチオン種(2PC・+)となり、同時に還元されたドーマント種が成長種となり鎖の伸長を開始する。
  3. 成長種からの一電子移動により有機光触媒が再生する。その際、酸化された成長種は再びドーマント種となり、成長を停止する。
2016-08-15_03-23-46

5,10-ジヒドロフェナジン誘導体を有機光触媒として用いたラジカル重合反応

 

本触媒系では、可視光照射を停止することでポリマー鎖の成長を任意の反応時間で停止させることができます。また、単離したポリマーに異なる基質を加え、有機光触媒存在下で可視光を照射したところ、1つのポリマー内に2種類の鎖を有するブロック共重合体を形成することにも成功しています。

5,10-ジフェニル-5,10-ジヒドロフェナジン誘導体のうち、特に触媒活性の高かったトリフルオロメチル誘導体について3PC*のhigh-SOMOの分子軌道を計算したところ、片方のフェニル基およびトリフルオロメチル基上に電子が局在化していました(図 5,左)。この結果を踏まえ、3PC*のhigh-SOMO状態で片方の置換基上に電子が局在化する有機光触媒を設計し反応に用いたところ、D=1.28と分子量のばらつきが小さな状態に保ったまま、数平均分子量が理論値と近いポリマーを収率よく合成することに成功しました。また、開始剤やモノマーの当量を変えることにより任意の分子量をもつポリマーの合成を達成しています(図 5,右)。

2016-08-15_03-24-28

図5. high-SOMOの分子軌道

まとめ

今回Miyakeらは、有機光触媒を用いて、可視光照射下、分子量のばらつきが小さな状態に保ったまま、数平均分子量が理論値と近いポリマーを収率よく合成することに成功しました。本反応は反応条件が温和かつ金属錯体を使用しない為、実用的なポリマー材料の合成において非常に有用な反応であると言えるでしょう。また、ブロック共重合体の形成にも成功していることから、多種多様のポリマーを合成する手法になることが期待されます。

 

参考文献

  1.  ポリマーの分子量のばらつきの度合いは一般的に多分散度Dで表され、Dの値が1に近い程分子量のばらつきが小さいといえる
  2. (a) Wang, J.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614. DOI: 10.1021/ja00125a035 (b) Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721. DOI: 10.1021/ma00109a056
  3. Matyjaszewski, K. ACS Symposium Ser. 2015, 1187, 1.
  4. (a) Treat, N. J. et al. J. Am. Chem. Soc. 2014, 136, 16096. DOI: 10.1021/ja510389m (b) Miyake, G. M.; Theriot, J. C. Macromolecules 2014, 47, 8255. DOI: 10.1021/ma502044f (c) Pan, X.; Lamson, M.; Yan, J.; Matyjaszewski, K. ACS Macro Lett. 2015, 4, 192. DOI: 10.1021/mz500834g

 

関連書籍

bona

bona

投稿者の記事一覧

愛知で化学を教えています。よろしくお願いします。

関連記事

  1. 化学クラスタ発・地震被害報告まとめ
  2. gem-ジフルオロアルケンの新奇合成法
  3. たるんだ肌を若返らせる薄膜
  4. リケラボとコラボして特集記事を配信します
  5. 自己組織化ホスト内包接による水中での最小ヌクレオチド二重鎖の形成…
  6. 可視光増感型電子移動機構に基づく強還元触媒系の構築
  7. 大量合成も可能なシビれる1,2-ジアミン合成法
  8. アミドをエステルに変化させる触媒

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ボツリヌストキシン (botulinum toxin)
  2. エチレンをつかまえて
  3. クリストフ・レーダー Christoph Rader
  4. 歪み促進逆電子要請型Diels-Alder反応 SPIEDAC reaction
  5. 痔の薬のはなし 真剣に調べる
  6. 中学入試における化学を調べてみた 2013
  7. ラボからのスケールアップ再現性手法【終了】
  8. 海藻成長の誘導物質発見 バイオ研
  9. 3Mとはどんな会社?
  10. アザジラクチン あざじらくちん azadirachtin

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年9月
« 8月   10月 »
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

注目情報

最新記事

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:③その他の材料

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を…

自己多層乳化を用いたマトリョーシカ微粒子の調製 〜油と水を混ぜてすぐ固めるだけ〜

岡山大学学術研究院自然科学学域(工)の渡邉貴一研究准教授と同大学院自然科学研究科博士前期課程の安原有…

【書籍】セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–

今回ご紹介する書籍「セルプロセッシング工学 (増補) –抗体医薬から再生医療まで–」は、20…

芳香環にフッ素を導入しながら変形する: 有機フッ素化合物の新規合成法の開発に成功

第361回のスポットライトリサーチは、早稲田大学大学院先進理工学研究科(山口潤一郎研究室)小松田 雅…

湘南ヘルスイノベーションパークがケムステVプレミアレクチャーに協賛しました

レジェンド化学者もしくは第一人者の長時間講演を完全無料で放映する、ケムステVプレ…

化学企業が相次いで学会や顧客から表彰される

武蔵エナジーソリューションズ株式会社に所属する研究者が、2022年度電気化学会技術賞(棚橋賞)を受賞…

第20回次世代を担う有機化学シンポジウム

第20回記念!今年は若手向けの新企画もやります!「若手研究者が口頭発表する機会や自由闊達にディス…

ビナミジニウム塩 Vinamidinium Salt

概要ビナミジニウム塩(Vinamidinium Salt)は、カルボン酸をヴィルスマイヤー・ハッ…

伝わるデザインの基本 増補改訂3版 よい資料を作るためのレイアウトのルール

(さらに…)…

生体医用イメージングを志向した第二近赤外光(NIR-II)色素:②合成蛍光色素

バイオイメージングにおけるの先端領域の一つである「第二近赤外光(NIR-II)色素」についての総説を…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP