[スポンサーリンク]

化学者のつぶやき

ピリジンの立体装飾でアルカロイドをつくる

[スポンサーリンク]

複雑テルペンアルカロイド 、アルテミシジンの全合成がわずか11工程で達成された。ピリジンの巧みな立体装飾(脱芳香族的付加環化反応)による、アルテミシジン類の主骨格構築と立体特異的な官能基導入が鍵である。

アデノシンーリン酸に類似したアルテミシジン類とその合成

天然にはDNAやRNAの構成単位であるヌクレオチドに類似した化合物(ヌクレオチド類似体)が存在する。例えば、モノテルペンアルカロイドであるアルテミシジン(altemicidin: 1)や類縁体SB-203207(2)とSB-203208(3)は(図1A)、アデノシン一リン酸(AMP: 4)と分子の大きさや電荷分布が類似する(図1B)[1, 2]。そのため、13はヌクレオチド類似体として逆転写酵素阻害剤などのリード化合物として注目される。

13は、極性官能基が密集したヘキサヒドロアザインデン骨格(図1 青色部分)をもち、合成難易度は高い。実際12の全合成が達成されているが、いずれも約30工程に及ぶ多段階合成であり[3]、創薬研究を加速させるためには、より効率的な13の合成法の開発が必要である。
13は生合成を模倣すると、イリドイド5の位置選択的な酸化によって合成できると考えられる(図1C左)。本論文の著者であるMaimone准教授は、生合成模倣型の骨格構築に続く酸化反応による高酸化セスキテルペン類の合成を得意とする[4]。しかし今回彼らは、1にテトラヒドロピリジンが“埋もれて”いることに着目し、古典的なピリジンの脱芳香族的官能基化によって構築できると考えた[5]

すなわち、酸化度が高いが、1-3の主骨格とすべての官能基を有する合成中間体6を選定し、1の合成を計画した(図1C右)。中間体6は、3-シアノピリジン(7)とオキシム誘導体の脱芳香族化を伴う付加環化によって合成できると考えた。

図1. A. アルテミシジン類 B. アルテミシジンとAMPの静電ポテンシャル図(一部論文より引用) C. 合成戦略

 

Dearomative Synthetic Entry into the Altemicidin Alkaloids
Harmange Magnani, C. S.; Maimone, T. J. J. Am. Chem. Soc. 2021, 143, 7935–7939.
DOI: 10.1021/jacs.1c04147

論文著者の紹介


研究者:Thomas J. Maimone
研究者の経歴:
–2004 B.S. University of California, Berkeley, USA (Prof. Dirk Trauner)
2005–2009 Ph.D., The Scripps Research Institute, USA (Prof. Phil S. Baran)
2009–2012 Postdoc, Massachusetts Institute of Technology, USA (Prof. Stephen L. Buchwald)
2012–2018 Assistant Professor, University of California, Berkeley, USA
2018– Associate Professor, University of California, Berkeley, USA
研究内容:天然物の全合成

論文の概要

実際に、オキシム誘導体としてシリルエノールエーテル8を選択し、8を3-シアノピリジン(7)に付加した後に環化させることでヘキサヒドロアザインデン骨格の構築を試みた。

まず7からクロロギ酸フェニルとTMSOTfにより調製したピリジニウム塩に、8を作用させることで脱芳香族化体9を合成した。脱芳香族化体9をオキシム10に誘導後、加熱することで、立体特異的なニトロンの分子内1,3-双極子付加環化反応を進行させ、続くフェニルカルバメートの除去により望みの付加環化体6を得た。

つまり、”余分な酸素架橋部位”はオレフィンとの反応性の獲得と、第三級アミン部位の立体選択的な構築のために必要であった。本合成法により、単純なピリジン誘導体から5工程で、1の主骨格構築と第三級アミンの導入が可能となった。しかし、61へと導くためには”酸素架橋部位”、すなわち、オキシムエーテル部位のC–O結合とN–O結合の還元が必要であった。6をアセチル化した11を種々の還元条件に付したが、望みの還元体を得ることはできなかった。

検討の結果、11をメチル化した後に、Mo(CO)3(MeCN)3とNaBH3CNを作用させることで目的の還元が進行し、テトラヒドロピリジン12を得ることに成功した。最後に、12に種々の官能基変換を施すことで1を合成した。

以上、3-シアノピリジンの脱芳香族的官能基化と分子内双極付加環化による迅速なヘキサヒドロアザインデン骨格の構築を鍵反応として1の合成が11工程で達成された。

参考文献

  1. (a) Takahashi, A.; Kurasawa, S.; Ikeda, D.; Okami, Y.; Takeuchi, T. Altemicidin, a New Acaricidal and Antitumor Substance I. Taxonomy, Fermentation, Isolation and Physico-Chemical and Biological Properties. J. Antibiot. 1989, 42, 1556–1561. DOI: 10.7164/antibiotics.42.1556 (b) Takahashi, A.; Ikeda, D.; Nakamura, H.; Naganawa, H.; Kurasawa, S.; Okami, Y.; Takeuchi, T.; Iitaka, Y. Altemicidin, a New Acaricidal and Antitumor Substance II. Structural Determination. J. Antibiot. 1989, 42, 1562–1566. DOI: 10.7164/antibiotics.42.1562 (c) Takahashi, A.; Naganawa, H.; Ikeda, D.; Okami, Y. Structure Determination of Altemicidin by NMR Spectroscopic Analysis. Tetrahedron 1991, 47, 3621–3632. DOI: 10.1016/s0040-4020(01)80875-9
  2. Houge-Frydrych, C. S. V.; Gilpin, M. L.; Skett, P. W.; Tyler, J. W. SB-203207 and SB-203208, Two Novel Isoleucyl tRNA Synthetase Inhibitors from a Streptomyces Sp. J. Antibiot. 2000, 53 364–372, DOI: 10.7164/antibiotics.53.364
  3. (a) Kende, A. S.; Liu, K.; Brands, K. M. J. Total Synthesis of (-)-Altemicidin: A Novel Exploitation of the Potier-Polonovski Rearrangement. J. Am. Chem. Soc. 1995, 117, 10597–10598. DOI: 10.1021/ja00147a032 (b) Hirooka, Y.; Ikeuchi, K.; Kawamoto, Y.; Akao, Y.; Furuta, T.; Asakawa, T.; Inai, M.; Wakimoto, T.; Fukuyama, T.; Kan, T. Enantioselective Synthesis of SB-203207. Org. Lett. 2014, 16, 1646–1649. DOI: 10.1021/ol5002973
  4. (a) Hung, K.; Condakes, M. L.; Morikawa, T.; Maimone, T. J. Oxidative Entry into the Illicium Sesquiterpenes: Enantiospecific Synthesis of (+)-Pseudoanisatin. J. Am. Chem. Soc. 2016, 138, 16616–16619. DOI: 10.1021/jacs.6b11739 (b) Condakes, M. L.; Hung, K.; Harwood, S. J.; Maimone, T. J. Total Syntheses of (−)-Majucin and (−)-Jiadifenoxolane A, Complex Majucin-Type Illicium Sesquiterpenes. J. Am. Chem. Soc. 2017, 139, 17783–17786. DOI: 10.1021/jacs.7b11493 (c) Hung, K.; Condakes, M. L.; Novaes, L. F. T.; Harwood, S. J.; Morikawa, T.; Yang, Z.; Maimone, T. J. Development of a Terpene Feedstock-Based Oxidative Synthetic Approach to the Illicium Sesquiterpenes. J. Am. Chem. Soc. 2019, 141, 3083–3099. DOI: 10.1021/jacs.8b12247
  5. Huck, C. J.; Sarlah, D. Shaping Molecular Landscapes: Recent Advances, Opportunities, and Challenges in Dearomatization. Chem 2020, 6, 1589–1603. DOI: 10.1016/j.chempr.2020.06.015

著者に関するケムステ記事

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 光触媒-ニッケル協働系によるシステイン含有ペプチドのS-アリール…
  2. 文具に凝るといふことを化学者もしてみむとてするなり⑮:4Kモニタ…
  3. 立体障害を超えろ!-「London分散力」の威力-
  4. 第34回ケムステVシンポ「日本のクリックケミストリー」を開催しま…
  5. 新規色素設計指針を開発 -世界最高の太陽光エネルギー変換効率の実…
  6. ポンコツ博士の海外奮闘録⑪ 〜博士,データをとる〜
  7. 研究室での英語【Part 3】
  8. 【読者特典】第92回日本化学会付設展示会を楽しもう!PartII…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ゼロから学ぶ機械学習【化学徒の機械学習】
  2. 第96回日本化学会付設展示会ケムステキャンペーン!Part I
  3. Dead Endを回避せよ!「全合成・極限からの一手」②(解答編)
  4. GRE Chemistry 受験報告 –試験当日·結果発表編–
  5. 脱法ドラッグ、薬物3成分を初指定 東京都
  6. 透明なカニ・透明な紙:バイオナノファイバーの世界
  7. 有機化合物合成中に発火、理化学研が半焼--仙台 /宮城
  8. オキシトシンを「見える化」するツールの開発と応用に成功-謎に包まれた脳内オキシトシンの働きの解明に新たな光-
  9. 芳香環シラノール
  10. 博士後期で学費を企業が肩代わり、北陸先端大が国内初の制度

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年8月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP