[スポンサーリンク]

化学者のつぶやき

ピリジンの立体装飾でアルカロイドをつくる

[スポンサーリンク]

複雑テルペンアルカロイド 、アルテミシジンの全合成がわずか11工程で達成された。ピリジンの巧みな立体装飾(脱芳香族的付加環化反応)による、アルテミシジン類の主骨格構築と立体特異的な官能基導入が鍵である。

アデノシンーリン酸に類似したアルテミシジン類とその合成

天然にはDNAやRNAの構成単位であるヌクレオチドに類似した化合物(ヌクレオチド類似体)が存在する。例えば、モノテルペンアルカロイドであるアルテミシジン(altemicidin: 1)や類縁体SB-203207(2)とSB-203208(3)は(図1A)、アデノシン一リン酸(AMP: 4)と分子の大きさや電荷分布が類似する(図1B)[1, 2]。そのため、13はヌクレオチド類似体として逆転写酵素阻害剤などのリード化合物として注目される。

13は、極性官能基が密集したヘキサヒドロアザインデン骨格(図1 青色部分)をもち、合成難易度は高い。実際12の全合成が達成されているが、いずれも約30工程に及ぶ多段階合成であり[3]、創薬研究を加速させるためには、より効率的な13の合成法の開発が必要である。
13は生合成を模倣すると、イリドイド5の位置選択的な酸化によって合成できると考えられる(図1C左)。本論文の著者であるMaimone准教授は、生合成模倣型の骨格構築に続く酸化反応による高酸化セスキテルペン類の合成を得意とする[4]。しかし今回彼らは、1にテトラヒドロピリジンが“埋もれて”いることに着目し、古典的なピリジンの脱芳香族的官能基化によって構築できると考えた[5]

すなわち、酸化度が高いが、1-3の主骨格とすべての官能基を有する合成中間体6を選定し、1の合成を計画した(図1C右)。中間体6は、3-シアノピリジン(7)とオキシム誘導体の脱芳香族化を伴う付加環化によって合成できると考えた。

図1. A. アルテミシジン類 B. アルテミシジンとAMPの静電ポテンシャル図(一部論文より引用) C. 合成戦略

 

Dearomative Synthetic Entry into the Altemicidin Alkaloids
Harmange Magnani, C. S.; Maimone, T. J. J. Am. Chem. Soc. 2021, 143, 7935–7939.
DOI: 10.1021/jacs.1c04147

論文著者の紹介


研究者:Thomas J. Maimone
研究者の経歴:
–2004 B.S. University of California, Berkeley, USA (Prof. Dirk Trauner)
2005–2009 Ph.D., The Scripps Research Institute, USA (Prof. Phil S. Baran)
2009–2012 Postdoc, Massachusetts Institute of Technology, USA (Prof. Stephen L. Buchwald)
2012–2018 Assistant Professor, University of California, Berkeley, USA
2018– Associate Professor, University of California, Berkeley, USA
研究内容:天然物の全合成

論文の概要

実際に、オキシム誘導体としてシリルエノールエーテル8を選択し、8を3-シアノピリジン(7)に付加した後に環化させることでヘキサヒドロアザインデン骨格の構築を試みた。

まず7からクロロギ酸フェニルとTMSOTfにより調製したピリジニウム塩に、8を作用させることで脱芳香族化体9を合成した。脱芳香族化体9をオキシム10に誘導後、加熱することで、立体特異的なニトロンの分子内1,3-双極子付加環化反応を進行させ、続くフェニルカルバメートの除去により望みの付加環化体6を得た。

つまり、”余分な酸素架橋部位”はオレフィンとの反応性の獲得と、第三級アミン部位の立体選択的な構築のために必要であった。本合成法により、単純なピリジン誘導体から5工程で、1の主骨格構築と第三級アミンの導入が可能となった。しかし、61へと導くためには”酸素架橋部位”、すなわち、オキシムエーテル部位のC–O結合とN–O結合の還元が必要であった。6をアセチル化した11を種々の還元条件に付したが、望みの還元体を得ることはできなかった。

検討の結果、11をメチル化した後に、Mo(CO)3(MeCN)3とNaBH3CNを作用させることで目的の還元が進行し、テトラヒドロピリジン12を得ることに成功した。最後に、12に種々の官能基変換を施すことで1を合成した。

以上、3-シアノピリジンの脱芳香族的官能基化と分子内双極付加環化による迅速なヘキサヒドロアザインデン骨格の構築を鍵反応として1の合成が11工程で達成された。

参考文献

  1. (a) Takahashi, A.; Kurasawa, S.; Ikeda, D.; Okami, Y.; Takeuchi, T. Altemicidin, a New Acaricidal and Antitumor Substance I. Taxonomy, Fermentation, Isolation and Physico-Chemical and Biological Properties. J. Antibiot. 1989, 42, 1556–1561. DOI: 10.7164/antibiotics.42.1556 (b) Takahashi, A.; Ikeda, D.; Nakamura, H.; Naganawa, H.; Kurasawa, S.; Okami, Y.; Takeuchi, T.; Iitaka, Y. Altemicidin, a New Acaricidal and Antitumor Substance II. Structural Determination. J. Antibiot. 1989, 42, 1562–1566. DOI: 10.7164/antibiotics.42.1562 (c) Takahashi, A.; Naganawa, H.; Ikeda, D.; Okami, Y. Structure Determination of Altemicidin by NMR Spectroscopic Analysis. Tetrahedron 1991, 47, 3621–3632. DOI: 10.1016/s0040-4020(01)80875-9
  2. Houge-Frydrych, C. S. V.; Gilpin, M. L.; Skett, P. W.; Tyler, J. W. SB-203207 and SB-203208, Two Novel Isoleucyl tRNA Synthetase Inhibitors from a Streptomyces Sp. J. Antibiot. 2000, 53 364–372, DOI: 10.7164/antibiotics.53.364
  3. (a) Kende, A. S.; Liu, K.; Brands, K. M. J. Total Synthesis of (-)-Altemicidin: A Novel Exploitation of the Potier-Polonovski Rearrangement. J. Am. Chem. Soc. 1995, 117, 10597–10598. DOI: 10.1021/ja00147a032 (b) Hirooka, Y.; Ikeuchi, K.; Kawamoto, Y.; Akao, Y.; Furuta, T.; Asakawa, T.; Inai, M.; Wakimoto, T.; Fukuyama, T.; Kan, T. Enantioselective Synthesis of SB-203207. Org. Lett. 2014, 16, 1646–1649. DOI: 10.1021/ol5002973
  4. (a) Hung, K.; Condakes, M. L.; Morikawa, T.; Maimone, T. J. Oxidative Entry into the Illicium Sesquiterpenes: Enantiospecific Synthesis of (+)-Pseudoanisatin. J. Am. Chem. Soc. 2016, 138, 16616–16619. DOI: 10.1021/jacs.6b11739 (b) Condakes, M. L.; Hung, K.; Harwood, S. J.; Maimone, T. J. Total Syntheses of (−)-Majucin and (−)-Jiadifenoxolane A, Complex Majucin-Type Illicium Sesquiterpenes. J. Am. Chem. Soc. 2017, 139, 17783–17786. DOI: 10.1021/jacs.7b11493 (c) Hung, K.; Condakes, M. L.; Novaes, L. F. T.; Harwood, S. J.; Morikawa, T.; Yang, Z.; Maimone, T. J. Development of a Terpene Feedstock-Based Oxidative Synthetic Approach to the Illicium Sesquiterpenes. J. Am. Chem. Soc. 2019, 141, 3083–3099. DOI: 10.1021/jacs.8b12247
  5. Huck, C. J.; Sarlah, D. Shaping Molecular Landscapes: Recent Advances, Opportunities, and Challenges in Dearomatization. Chem 2020, 6, 1589–1603. DOI: 10.1016/j.chempr.2020.06.015

著者に関するケムステ記事

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 芳香環メタ位を触媒のチカラで狙い撃ち
  2. 革新的なオンライン会場!「第53回若手ペプチド夏の勉強会」参加体…
  3. 「もしかして転職した方がいい?」と思ったらまずやるべき3つのこと…
  4. 【イベント】「化学系学生のための企業研究セミナー」「化学系女子学…
  5. 食中毒と衛生管理の重要性ーChemical Times特集より
  6. アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化
  7. 円偏光スピンLEDの創製
  8. シグマトロピー転位によるキラルα-アリールカルボニルの合成法

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ChemDrawの使い方【作図編②:触媒サイクル】
  2. 触媒的C-H活性化反応 Catalytic C-H activation
  3. 来年の応募に向けて!:SciFinder Future Leaders 2018 体験記
  4. アンドレアス ファルツ Andreas Pfaltz
  5. ゲームを研究に応用? タンパク質の構造計算ゲーム「Foldit」
  6. 2011年文化功労者「クロスカップリング反応の開拓者」玉尾皓平氏
  7. 有機合成化学協会誌2018年9月号:キラルバナジウム触媒・ナフタレン多量体・バイオインスパイアード物質変換・エラジタンニン・モルヒナン骨格・ドナー・アクセプター置換シクロプロパン・フッ素化多環式芳香族炭化水素
  8. Altmetric Score Top 100をふりかえる ~2018年版~
  9. サイエンスアゴラの魅力を聞く-「iCeMS」水町先生
  10. 第39回「発光ナノ粒子を用いる生物イメージング」Frank van Veggel教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年8月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

【速報】2023年ノーベル化学賞は「量子ドットの発見と合成」へ!

2023年のノーベル化学賞は「量子ドットの発見と合成」の業績で、マサチューセッツ工科大学のMoung…

エキモフ, アレクセイ イワノビッチ Екимов, Алексей Иванович

エキモフ, アレクセイ イワノビッチ(Екимов, Алексей Иванович, Alexe…

ルイ・E. ・ブラス Louis E. Brus

ルイ・ユージーン・ブラス (Louis Eugene Brus, 1943年8月10日-, オハイオ…

モウンジ・バウェンディ Moungi G Bawendi

モウンジ・バウェンディ (Moungi G Bawendi 1961年3月15日 パリ生まれ)はアメ…

マテリアルズ・インフォマティクスにおける分子生成の基礎

開催日:2023/10/11 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

はやぶさ2が持ち帰った有機化合物

小惑星リュウグウから始原的な「塩(Salt)」と有機硫黄分子群を発見(9月18日JAMSTECプレス…

Let’s Make Wave , Make World. −マイクロ波で!プロセス革新ワークショップ −

<内容>マイクロ波のプロと次世代プロセスへの転換に向けた勘所を押さえ、未来に向けたイノベーシ…

ゲルマベンゼニルアニオンを用いた単原子ゲルマニウム導入反応の開発

第566回のスポットライトリサーチは、京都大学化学研究所 物質創成化学研究系 有機元素化学領域 (山…

韮山反射炉に行ってみた

韮山反射炉は1857年に完成した静岡県伊豆の国市にある国指定の史跡(史跡名勝記念物)で、2015年に…

超高圧合成、添加剤が選択的物質合成の決め手に -電池材料等への応用に期待-

第565回のスポットライトリサーチは、東京工業大学 科学技術創成研究院 フロンティア材料研究所 東・…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP