[スポンサーリンク]

化学者のつぶやき

祝ふぐ!新たなtetrodotoxinの全合成

[スポンサーリンク]

Tetrodotoxinの簡便な全合成が報告された2つの反応、分子内1,3-双極子付加環化反応とRu触媒によるヒドロキシラクトン化がこの難関天然物攻略の鍵となった。

Tetrodotoxin(TTX)の合成研究

フグから単離された海洋天然物(–)-tetrodotoxin(1)は、電位依存性ナトリウムチャネルを遮断する神経毒である。一方で、その作用を活用した治療薬の開発が期待される[1]1はジオキサアダマンタンを主骨格とした四環式構造をもち、高度にヘテロ官能基化されている。そのため、合成化学者にとってもその力量を試す「格好の題材」である[2]。しかし1972年にらが初の全合成を報告して以降、その合成の難解さから30年間合成報告はなかった(図1A)。21世紀に入り磯部、Du Boisらが各々不斉全合成を矢継ぎ早に報告し、以後10例以上の合成法が報告されている(形式合成も含む)。過去の合成例を俯瞰すると、1の合成の最大の難関は立体障害の大きなC8a位への窒素原子の導入とC9、C10位でのα-ヒドロキシラクトンの形成と考えられる。もちろん、連続した不斉点をもつシクロヘキサン骨格の構築に多工程を要する。

論文の概要

今回Traunerらは上述の課題を攻略し、1の短工程全合成を報告した(図 1B)。まず、C8a位への窒素原子の導入とシクロヘキサン骨格の構築を、グルコース誘導体2から8工程で合成した、ニトリルオキシド3の分子内1,3-双極子付加環化反応により試みた。得られたイソキサゾリン4へのアセチレン付加とN–O均等開裂により、C8a位にアミンが導入されたシクロヘキサン5を得ることに成功した。次なる課題はジオキサアダマンタン骨格の前駆体となるα-ヒドロキシラクトンの形成である。彼らは、アルキンとC5位のヒドロキシ基の環化に続く生じたオレフィンの酸化のワンポット化に挑戦した。その結果、Ru触媒により5から一挙にヒドロキシラクトン6へと誘導することに成功した。続く官能基変換とC4a位エピメリ化(後述)により1の全合成を22工程、総収率11%で達成した。

“A Concise Synthesis of Tetrodotoxin”
Konrad, D. B.; Rühmann, K.-P.; Ando, H.; Hetzler, B.; Houk, K. N.; Matsuura, B. S.; Trauner, D.
Science 2022, 377, 411–415. DOI:  10.1126/science.abn0571

図1. (A)過去の1の全合成 (B)Traunerらによる1の合成

本論文の鍵反応の1つであるヒドロキシラクトン化と優れた手法であるC4a位のエピメリ化について詳細を述べる。彼らが当初提案したヒドロキシラクトン化法は失敗に終わった(詳しくは論文参照)。そこでTrost、McDonaldらによる末端アルキンの酸化的環化異性化反応と、Blechertらが報告したオレフィンのケトヒドロキシル化に着目した[3][4][5]。まず、C10位に末端アルキンとC5位にヒドロキシ基をもつ5をRu(II)触媒を用いた環化異性化反応によりオレフィン7とした(図 2A)。続いてオキソンにより系中でRuを酸化し、ケトヒドロキシル化を進行させヒドロキシラクトン6を得た。つまり、系中でRuの酸化数を調節することで、課題となるヒドロキシラクトン化をワンポットで達成した。

またエピメリ化について、過去の1の全合成ではC4aの不斉中心を合成初期に構築している。しかし、Traunerらはあえて、逆の立体化学をもつ8からイミン–エナミン互変異性とsyn–ペンタン相互作用から生じる熱力学的安定性を利用した。そして合成の最終工程で8のエピメリ化により、1とTTX類縁体9を得た(図 2B)。なおこのC4a位の立体配置は、イソキサゾリン4(図1B)へのアセチレンの付加をconvex面から誘導し、C8a位に目的の立体化学を導入するのに有効であった。これは、エピメリ化前の立体配座を利用した巧みな合成戦略である。

 

図2. (A)ヒドロキシラクトン化 (B)エピメリ化

論文著者の紹介

研究者 : Dirk Trauner

研究者の経歴

1995 B.S., Free University of Berlin, Germany
1996–1997 Ph.D., University of Vienna, Austria (Prof. Johann Mulzer)
1998–2000 Postdoc, Memorial Sloan-Kettering Cancer Center, USA (Prof. Samuel J. Danishefsky)
2000–2010 Assistant and Associate Professor, the University of California, Berkeley, USA
2008–2017 Professor, Ludwig Maximilian University of Munich, Germany
2017–2021 Professor, New York University, USA
2021– Professor, University of Pennsylvania, USA

研究内容 : 神経科学、光薬理学、化学合成、天然物化学、ナノスレッド

参考文献

  1. Moczydlowski, E. G. The Molecular Mystique of Tetrodotoxin Toxicon 2013, 63, 165–183. DOI: 1016/j.toxicon.2012.11.026
  2. Nishikawa, T.; Isobe, M. Synthesis of Tetrodotoxin, Classic but Still Fascinating Natural Product. Rec. 2013, 13, 286–302. DOI: 10.1002/tcr.201200025
  3. Trost, B. M.; Rhee, Y. H. Ruthenium-Catalyzed Cycloisomerization-Oxidation of Homopropargyl Alcohols. A New Access to γ-Butyrolactones. J. Am. Chem. Soc. 1999, 121, 11680–11683. DOI: 10.1021/ja992013m
  4. McDonald, F. E.; Reddy, K. S.; Díaz, Y. Stereoselective Glycosylations of a Family of 6-Deoxy-1,2-glycals Generated by Catalytic Alkynol Cycloisomerization. J. Am. Chem. Soc. 2000, 122, 4304–4309. DOI: 10.1021/ja994229u
  5. Zacuto, M. J.; Tomita, D.; Pirzada, Z.; Xu, F. Chemoselectivity of the Ru-Catalyzed Cycloisomerization Reaction for the Synthesis of Dihydropyrans; Application to the Synthesis of L-Forosamine. Org. Lett. 2010, 12, 684–687. DOI: 10.1021/ol9026667

関連記事

Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 文具に凝るといふことを化学者もしてみむとてするなり⑮:4Kモニタ…
  2. 1,2-還元と1,4-還元
  3. ゴードン会議に参加して:ボストン周辺滞在記 Part II
  4. ホウ素と窒素固定のおはなし
  5. Carl Boschの人生 その4
  6. マテリアルズ・インフォマティクスのためのデータサイエンティスト入…
  7. 印象に残った天然物合成1
  8. 逆生合成理論解析という手法を開発し、テルペン系類縁天然物 pen…

注目情報

ピックアップ記事

  1. 水素化ホウ素ナトリウム Sodium Borohydride
  2. 松田 豊 Yutaka Matsuda
  3. 三核ホウ素触媒の創製からクリーンなアミド合成を実現
  4. 温和な室温条件で高反応性活性種・オルトキノジメタンを生成
  5. 技術者・研究者のためのプレゼンテーション入門
  6. シクロプロパンの数珠つなぎ
  7. 秋の褒章2011-化学
  8. 2つの結合回転を熱と光によって操る、ベンズアミド構造の新たな性質を発見
  9. 有機合成化学協会誌2022年11月号:英文特別号
  10. 「コミュニケーションスキル推し」のパラドックス?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP