[スポンサーリンク]

化学者のつぶやき

期待度⭘!サンドイッチ化合物の新顔「シクロセン」

[スポンサーリンク]

π共役系配位子と金属が交互に配位しながら環を形成したサンドイッチ化合物の合成が達成された。嵩高い置換基を非対称にもつπ共役系配位子の利用で環状構造が実現できた。

サンドイッチ化合物の構造

1951年に発見されたフェロセンは、有機金属化学を拓くにとどまらず、今なお研究者の注目を集め、新規構造の開拓とその応用の両面から研究が続けられている(図1A)(1)。フェロセンのように金属原子がπ共役系配位子に挟まれた構造の化合物は、サンドイッチ化合物と呼ばれる。中でも、サンドイッチ構造が重なったマルチデッカー化合物は、直鎖状に伸びた構造からナノワイヤーへの応用が研究されている(2)。一方、マルチデッカー化合物で環状構造を構築するには、マルチデッカー構造を折り曲げなければならず(金属原子と2つのπ共役系配位子のなす角度が180°以下)、未だ報告がない。

以前著者らは、溶解性と立体保護をねらい嵩高い置換基を非対称にもつCotTIPSを用いてマルチデッカー化合物を合成した(図1B)(3)。その結果、TIPS基同士の立体障害により屈曲した構造のマルチデッカー化合物を得た。彼らはこの屈曲角(∠Ct–Sm–Ct = 160°)が正十八角形の内角に近しいことに着目し、CotTIPSを用いれば環状マルチデッカー化合物が構築できると考えた。実際、今回彼らは[MII(thf)3(cotTIPS)]を調製したのち、結晶化することで十八量体からなる環状構造の構築に成功した。この環状マルチデッカー化合物はシクロセンと命名された。

図1. (A) サンドイッチ化合物の構造 (画像 著作 jcomp/出典:Freepik) (B) CotTIPSを用いた屈曲/環状マルチデッカー化合物

 

Synthesis and Properties of Cyclic Sandwich Compounds”

Münzfeld, L.; Gillhuber, S.; Hauser, A.; Lebedkin, S.; Hädinger, P.; Knöfel, N. D.; Zovko, C.; Gamer, M. T.; Weigend, F.; Kappes, M. M.; Roesky, P. W. Nature 2023, 620, 92–96.

DOI: 10.1038/s41586-023-06192-4

論文著者の紹介

研究者: Peter W. Roesky

研究者の経歴:

1992–1994 Ph.D., Technical University of Munich, Germany (Prof. W. A. Herrmann)
1995–1996 Postdoc, Northwestern University, USA (Prof. T. J. Marks)
1996–1999 Habilitation, University of Karlsruhe, Germany (Prof. Dr. D. Fenske)
1999–2001 Privatdozent, University of Karlsruhe, Germany
2001–2008 Professor of Inorganic Chemistry, Free University of Berlin, Germany
2008–      Professor of Inorganic Chemistry, University of Karlsruhe (currently Karlsruher Institute for Technology), Germany

研究内容: ランタノイド、金、亜鉛、アルカリ土類金属などの錯体の性質解明と触媒への応用

論文の概要

THF中、SrI2または[MIII2(thf)2] (M = Sm, Eu, Yb)に対して[K2(cotTIPS)]を作用させ、アニオン交換により[MII(thf)3(cotTIPS)]を調製した(図2A)。続いて、toluene/THF混合溶液から結晶化させると、[MII(thf)3(cotTIPS)]からTHFが解離し、シクロセンの結晶が得られた。

X線結晶構造解析の結果、得られたシクロセンは想定どおりに十八量体からなる環状構造であることが明らかとなった(図2B上)。SmシクロセンのSm–cotTIPS間の距離は2.2 Å、環の内径は17 Å、外径は38 Åであった。また、Ct–Sm–Ctの屈曲角は正十八角形の内角(160°)をわずかに上回っており、18個のSm原子は同一平面上に存在していなかった。SrおよびEuのシクロセンもSmシクロセンとほとんど変わらない環状構造を構築している。一方、Ybの場合、Ybに一分子のTHFが配位した環状四量体が構築されていた(図2B下)。Yb–cotTIPS間の二種類の配位結合のうち片方は二つの炭素がYbに配位しており、サンドイッチ構造をとっていなかった。Ybの環状四量体構築に関する考察および一連の化合物の光学特性に関する詳細は論文を参照されたい。

続いて、CotTIPSを用いることで環状構造が構築される理由を調査するためにDFT計算を実施した(図2C)。まず、Smシクロセンの部分構造の屈曲角(∠Ct–Sm–Ct)に対する置換基の効果を調査した。置換基をもたないCotでは屈曲せず、置換基がTMS基の場合でも屈曲角は178°と大きな変化はみられなかった。一方、TIPS基ではおよそ160°まで屈曲したため、TIPS基の嵩高さが屈曲構造の構築に必須であることが明らかとなった。また、シクロセンにおいても屈曲角は部分構造からほとんど変化していないため、大きな歪みなく環状構造が構築できる。次に、環構築の各段階におけるギブス自由エネルギーを算出した。鎖状構造ではモノマーが一つ増えるごとに約140 kJ/molずつ安定化する。その際、CotTIPSが回転すると27 kJ/mol不安定になるため、屈曲方向がそろうように鎖状構造が伸長する。さらに、閉環時の安定化エネルギーが322 kJ/molと大きく、十八量体においては環状構造が有利である。以上の理由から、環構築が円滑に進行することが明らかとなった。

図2. (A) シクロセンの合成 (B) シクロセンおよびYb環状四量体の構造 (C) 環構築における屈曲角およびギブス自由エネルギー(kJ/mol)

 

以上、嵩高い置換基を非対称にもつπ共役系配位子の利用により環状マルチデッカー化合物であるシクロセンが合成された。今後、置換基や金属種のさらなる検討によりシクロセンの化学の輪が広がることを期待する。

参考文献

  1. (a) Kealy, T. J.; Pauson, P. L. A New Type of Organo-Iron Compound. Nature 1951, 168, 1039–1040. DOI: 1038/1681039b0 (b) Fischer, E. O.; Pfab, W. Cyclopentadien-Metallkomplexe, ein Neuer Typ Metallorganischer Verbindungen. Z. Naturforsch., B: Chem. Sci. 1952, 7, 377–379. DOI: 10.1515/znb-1952-0701 (c) Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. The Structure of Iron Bis-cyclopentadienyl. J. Am. Chem. Soc. 1952, 74, 2125–2126. DOI: 10.1021/ja01128a527
  2. (a) Werner, H.; Salzer, A. Die Synthese Eines Ersten Doppel-Sandwich-Komplexes: Das Dinickeltricyclopentadienyl-Kation. React. Inorg. Met.-Org. Chem. 1972, 2, 239–248. DOI: 10.1080/00945717208069606 (b) Kurikawa, T.; Negishi, Y.; Hayakawa, F.; Nagao, S.; Miyajima, K.; Nakajima, A.; Kaya, K. Multiple-Decker Sandwich Complexes of Lanthanide-1,3,5,7-cyclooctatetraene [Lnn(C8H8)m] (Ln = Ce, Nd, Eu, Ho, and Yb); Localized Ionic Bonding Structure. J. Am. Chem. Soc. 1998, 120, 11766–11772. DOI: 10.1021/ja982438t
  3. Münzfeld, L.; Hauser, A.; Hädinger, P.; Weigend, F.; Roesky, P. W. The Archetypal Homoleptic Lanthanide Quadruple-Decker—Synthesis, Mechanistic Studies, and Quantum Chemical Investigations. Angew. Chem., Int. Ed. 2021, 60, 24493–24499. DOI: 10.1002/anie.202111227

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. フラーレンが水素化触媒に???
  2. 化学にインスパイアされたジュエリー
  3. アルケニルアミドに2つアリールを入れる
  4. 化学反応を起こせる?インタラクティブな元素周期表
  5. 赤絵磁器を彩る絵具:その特性解明と改良
  6. 中国へ行ってきました 西安・上海・北京編②
  7. 雷神にそっくり?ベンゼン環にカミナリ走る
  8. 複雑なアルカロイド合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 細胞の分子生物学/Molecular Biology of the Cell
  2. 薬剤師国家試験にチャレンジ!【有機化学編その2】
  3. ホウ素 Boron -ホウ酸だんごから耐火ガラスまで
  4. 花粉症対策の基礎知識
  5. 医薬各社、アルツハイマー病薬の開発進まず
  6. 「細胞専用の非水溶媒」という概念を構築
  7. ジェフ・ボーディ Jeffrey W. Bode
  8. 振動結合:新しい化学結合
  9. 実例で分かるスケールアップの原理と晶析【終了】
  10. タミフルの新規合成法・その2

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

【26卒】太陽HD研究開発 1day仕事体験

太陽HDでの研究開発職を体感してみませんか?私たちの研究活動についてより近くで体験していただく場…

カルベン転移反応 ~フラスコ内での反応を生体内へ~

有機化学を履修したことのある方は、ほとんど全員と言っても過言でもないほどカルベンについて教科書で習っ…

ナノ学会 第22回大会 付設展示会ケムステキャンペーン

ナノ学会の第22回大会が東北大学青葉山新キャンパスにて開催されます。協賛団体であるACS(ア…

【酵素模倣】酸素ガスを用いた MOF 内での高スピン鉄(IV)オキソの発生

Long らは酸素分子を酸化剤に用いて酵素を模倣した反応活性種を金属-有機構造体中に発生させ、C-H…

【書評】奇跡の薬 16 の物語 ペニシリンからリアップ、バイアグラ、新型コロナワクチンまで

ペニシリンはたまたま混入したアオカビから発見された──だけではない.薬の…

MEDCHEM NEWS 33-2 号「2022年度医薬化学部会賞」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

マテリアルズ・インフォマティクスにおける分子生成の基礎と応用

開催日:2024/05/22 申込みはこちら■開催概要「分子生成」という技術は様々な問題…

AlphaFold3の登場!!再びブレイクスルーとなりうるのか~実際にβ版を使用してみた~

2021年にタンパク質の立体構造予測ツールであるAlphaFold2 (AF2) が登場し、様々な分…

【5月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 有機金属化合物 オルガチックスによる「密着性向上効果の発現(プライマー)」

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

マテリアルズ・インフォマティクスにおける回帰手法の基礎

開催日:2024/05/15 申込みはこちら■開催概要マテリアルズ・インフォマティクスを…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP