[スポンサーリンク]

化学者のつぶやき

期待度⭘!サンドイッチ化合物の新顔「シクロセン」

[スポンサーリンク]

π共役系配位子と金属が交互に配位しながら環を形成したサンドイッチ化合物の合成が達成された。嵩高い置換基を非対称にもつπ共役系配位子の利用で環状構造が実現できた。

サンドイッチ化合物の構造

1951年に発見されたフェロセンは、有機金属化学を拓くにとどまらず、今なお研究者の注目を集め、新規構造の開拓とその応用の両面から研究が続けられている(図1A)(1)。フェロセンのように金属原子がπ共役系配位子に挟まれた構造の化合物は、サンドイッチ化合物と呼ばれる。中でも、サンドイッチ構造が重なったマルチデッカー化合物は、直鎖状に伸びた構造からナノワイヤーへの応用が研究されている(2)。一方、マルチデッカー化合物で環状構造を構築するには、マルチデッカー構造を折り曲げなければならず(金属原子と2つのπ共役系配位子のなす角度が180°以下)、未だ報告がない。

以前著者らは、溶解性と立体保護をねらい嵩高い置換基を非対称にもつCotTIPSを用いてマルチデッカー化合物を合成した(図1B)(3)。その結果、TIPS基同士の立体障害により屈曲した構造のマルチデッカー化合物を得た。彼らはこの屈曲角(∠Ct–Sm–Ct = 160°)が正十八角形の内角に近しいことに着目し、CotTIPSを用いれば環状マルチデッカー化合物が構築できると考えた。実際、今回彼らは[MII(thf)3(cotTIPS)]を調製したのち、結晶化することで十八量体からなる環状構造の構築に成功した。この環状マルチデッカー化合物はシクロセンと命名された。

図1. (A) サンドイッチ化合物の構造 (画像 著作 jcomp/出典:Freepik) (B) CotTIPSを用いた屈曲/環状マルチデッカー化合物

 

Synthesis and Properties of Cyclic Sandwich Compounds”

Münzfeld, L.; Gillhuber, S.; Hauser, A.; Lebedkin, S.; Hädinger, P.; Knöfel, N. D.; Zovko, C.; Gamer, M. T.; Weigend, F.; Kappes, M. M.; Roesky, P. W. Nature 2023, 620, 92–96.

DOI: 10.1038/s41586-023-06192-4

論文著者の紹介

研究者: Peter W. Roesky

研究者の経歴:

1992–1994 Ph.D., Technical University of Munich, Germany (Prof. W. A. Herrmann)
1995–1996 Postdoc, Northwestern University, USA (Prof. T. J. Marks)
1996–1999 Habilitation, University of Karlsruhe, Germany (Prof. Dr. D. Fenske)
1999–2001 Privatdozent, University of Karlsruhe, Germany
2001–2008 Professor of Inorganic Chemistry, Free University of Berlin, Germany
2008–      Professor of Inorganic Chemistry, University of Karlsruhe (currently Karlsruher Institute for Technology), Germany

研究内容: ランタノイド、金、亜鉛、アルカリ土類金属などの錯体の性質解明と触媒への応用

論文の概要

THF中、SrI2または[MIII2(thf)2] (M = Sm, Eu, Yb)に対して[K2(cotTIPS)]を作用させ、アニオン交換により[MII(thf)3(cotTIPS)]を調製した(図2A)。続いて、toluene/THF混合溶液から結晶化させると、[MII(thf)3(cotTIPS)]からTHFが解離し、シクロセンの結晶が得られた。

X線結晶構造解析の結果、得られたシクロセンは想定どおりに十八量体からなる環状構造であることが明らかとなった(図2B上)。SmシクロセンのSm–cotTIPS間の距離は2.2 Å、環の内径は17 Å、外径は38 Åであった。また、Ct–Sm–Ctの屈曲角は正十八角形の内角(160°)をわずかに上回っており、18個のSm原子は同一平面上に存在していなかった。SrおよびEuのシクロセンもSmシクロセンとほとんど変わらない環状構造を構築している。一方、Ybの場合、Ybに一分子のTHFが配位した環状四量体が構築されていた(図2B下)。Yb–cotTIPS間の二種類の配位結合のうち片方は二つの炭素がYbに配位しており、サンドイッチ構造をとっていなかった。Ybの環状四量体構築に関する考察および一連の化合物の光学特性に関する詳細は論文を参照されたい。

続いて、CotTIPSを用いることで環状構造が構築される理由を調査するためにDFT計算を実施した(図2C)。まず、Smシクロセンの部分構造の屈曲角(∠Ct–Sm–Ct)に対する置換基の効果を調査した。置換基をもたないCotでは屈曲せず、置換基がTMS基の場合でも屈曲角は178°と大きな変化はみられなかった。一方、TIPS基ではおよそ160°まで屈曲したため、TIPS基の嵩高さが屈曲構造の構築に必須であることが明らかとなった。また、シクロセンにおいても屈曲角は部分構造からほとんど変化していないため、大きな歪みなく環状構造が構築できる。次に、環構築の各段階におけるギブス自由エネルギーを算出した。鎖状構造ではモノマーが一つ増えるごとに約140 kJ/molずつ安定化する。その際、CotTIPSが回転すると27 kJ/mol不安定になるため、屈曲方向がそろうように鎖状構造が伸長する。さらに、閉環時の安定化エネルギーが322 kJ/molと大きく、十八量体においては環状構造が有利である。以上の理由から、環構築が円滑に進行することが明らかとなった。

図2. (A) シクロセンの合成 (B) シクロセンおよびYb環状四量体の構造 (C) 環構築における屈曲角およびギブス自由エネルギー(kJ/mol)

 

以上、嵩高い置換基を非対称にもつπ共役系配位子の利用により環状マルチデッカー化合物であるシクロセンが合成された。今後、置換基や金属種のさらなる検討によりシクロセンの化学の輪が広がることを期待する。

参考文献

  1. (a) Kealy, T. J.; Pauson, P. L. A New Type of Organo-Iron Compound. Nature 1951, 168, 1039–1040. DOI: 1038/1681039b0 (b) Fischer, E. O.; Pfab, W. Cyclopentadien-Metallkomplexe, ein Neuer Typ Metallorganischer Verbindungen. Z. Naturforsch., B: Chem. Sci. 1952, 7, 377–379. DOI: 10.1515/znb-1952-0701 (c) Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B. The Structure of Iron Bis-cyclopentadienyl. J. Am. Chem. Soc. 1952, 74, 2125–2126. DOI: 10.1021/ja01128a527
  2. (a) Werner, H.; Salzer, A. Die Synthese Eines Ersten Doppel-Sandwich-Komplexes: Das Dinickeltricyclopentadienyl-Kation. React. Inorg. Met.-Org. Chem. 1972, 2, 239–248. DOI: 10.1080/00945717208069606 (b) Kurikawa, T.; Negishi, Y.; Hayakawa, F.; Nagao, S.; Miyajima, K.; Nakajima, A.; Kaya, K. Multiple-Decker Sandwich Complexes of Lanthanide-1,3,5,7-cyclooctatetraene [Lnn(C8H8)m] (Ln = Ce, Nd, Eu, Ho, and Yb); Localized Ionic Bonding Structure. J. Am. Chem. Soc. 1998, 120, 11766–11772. DOI: 10.1021/ja982438t
  3. Münzfeld, L.; Hauser, A.; Hädinger, P.; Weigend, F.; Roesky, P. W. The Archetypal Homoleptic Lanthanide Quadruple-Decker—Synthesis, Mechanistic Studies, and Quantum Chemical Investigations. Angew. Chem., Int. Ed. 2021, 60, 24493–24499. DOI: 10.1002/anie.202111227
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 金属を超えるダイヤモンド ーボロンドープダイヤモンドー
  2. 電気化学ことはじめ(2) 電位と電流密度
  3. 化学者たちのエッセイ集【Part1】
  4. 創薬におけるPAINSとしての三環性テトラヒドロキノリン類
  5. 比色法の化学(後編)
  6. 不安定な高分子原料を従来に比べて 50 倍安定化することに成功!…
  7. ウイルスーChemical Times 特集より
  8. 英語で授業/発表するときのいろは【アメリカで Ph.D. をとる…

注目情報

ピックアップ記事

  1. クラウス・ミューレン Klaus Müllen
  2. 化学者だって数学するっつーの! :シュレディンガー方程式と複素数
  3. ナノスケールの虹が世界を変える
  4. 半導体・センシング材料に応用可能なリン複素環化合物の誘導体化
  5. 鄧 青雲 Ching W. Tang
  6. 紙製TLC!? 話題のクロマトシートを試してみた
  7. 力を受けると蛍光性分子を放出する有機過酸化物
  8. 祝ふぐ!新たなtetrodotoxinの全合成
  9. がん代謝物との環化付加反応によるがん化学療法
  10. 薬の副作用2477症例、HP公開始まる

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

藤多哲朗 Tetsuro Fujita

藤多 哲朗(ふじた てつろう、1931年1月4日 - 2017年1月1日)は日本の薬学者・天然物化学…

MI conference 2025開催のお知らせ

開催概要昨年エントリー1,400名超!MIに特化したカンファレンスを今年も開催近年、研究開発…

【ユシロ】新卒採用情報(2026卒)

ユシロは、創業以来80年間、“油”で「ものづくり」と「人々の暮らし」を支え続けている化学メーカーです…

Host-Guest相互作用を利用した世界初の自己修復材料”WIZARDシリーズ”

昨今、脱炭素社会への実現に向け、石油原料を主に使用している樹脂に対し、メンテナンス性の軽減や材料の長…

有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸・イナミド・第5族遷移金属アルキリデン錯体・強発光性白金錯体

有機合成化学協会が発行する有機合成化学協会誌、2025年4月号がオンラインで公開されています!…

第57回若手ペプチド夏の勉強会

日時2025年8月3日(日)~8月5日(火) 合宿型勉強会会場三…

人工光合成の方法で有機合成反応を実現

第653回のスポットライトリサーチは、名古屋大学 学際統合物質科学研究機構 野依特別研究室 (斎藤研…

乙卯研究所 2025年度下期 研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

次世代の二次元物質 遷移金属ダイカルコゲナイド

ムーアの法則の限界と二次元半導体現代の半導体デバイス産業では、作製時の低コスト化や動作速度向上、…

日本化学連合シンポジウム 「海」- 化学はどこに向かうのか –

日本化学連合では、継続性のあるシリーズ型のシンポジウムの開催を企画していくことに…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP