[スポンサーリンク]

化学者のつぶやき

未来のノーベル化学賞候補者

[スポンサーリンク]

今年のノーベル化学賞はゲルハルト・エルトゥル氏に決定しました!(詳しくはケムステニュースにて)

予想が見事に当たった!・・・とは言えませんが、なんとか数多くの予想候補者の中から選ばれ、すこしほっとしたところです。

それでは最後に何年何十年先になるかわかりませんが、「未来のノーベル化学賞受賞候補者」として何人か紹介しましょう。

John F. Hartwig, Stephen L. Buchwald (有機金属触媒)

nobel

両者とも有機金属、特にパラジウム、ルテニウム、ロジウム、イリジウム、銅を用いたアミンのカップリング反応をメインに研究を行っています。有名なものはBuchwald-Hartwigクロスカップリング。アリールハライド・アリールトリフラートとアミン・アルコキシド間の、パラジウム触媒によるクロスカップリング反応です。

2015-09-14_21-39-43

Buchwald-Hartwigクロスカップリング

 

高価なパラジウムを使用する必要がありますが、求核置換反応では通常合成不可能なアリールアミン・アリールエーテルが直接合成できる数少ない方法論です。医薬品を始めとし、含窒素芳香族化合物の需要はきわめて高く、有用性の高い反応のひとつといえます。

その他にもアトムエコノミーが高いヒドロアミノ化反応やその不斉触媒化など、様々な研究を行っています。それと同時に、反応のメカニズムをよく考察し、これらの反応機構をあきらかにしています。

とても素晴らしい業績ですが、正直言ってまだノーベル化学賞をとるにはインパクトが足りません。もし、鈴木章北大名誉教授や辻二郎元東工大教授、玉尾教授らがノーベル賞をとれなければ、一躍ノーベル化学賞候補者に躍り出るかもしれません。まだまだ若いのですぐにとれるといわけではなさそうですが、10年、20年たてば、この反応をもとにしたさらに優れた反応、もしくは彼ら自身がさらなる研究を行うことで、全く新しいを見出す可能性は大いにあります。というわけで、この2人を未来のノーベル化学賞受賞者候補としてあげておきます。

[追記] 2010年のノーベル化学賞は「クロスカップリング反応」が対象となりました。その為、この両者の本分野でのノーベル化学賞は難しいかもしれません。

K. B. Sharpless (クリックケミストリー)

nobel

シャープレス教授は2001年に「触媒的不斉酸化反応の開発」の業績により、野依良治ウィリアム・ノールズとともにノーベル化学賞を共同受賞しています。それなのに、なぜ今回未来のノーベル化学賞受賞者にあげたか――現在彼は研究テーマを完全に一新して、今までとはまったく異なるテーマ「クリックケミストリー」のみを推進しており、またそれが化学的に大変面白いコンセプトだからです。

クリックケミストリーとは、カチッ(Click)と音を立てて結合するような高官能基選択性・高収率・高速反応を基盤として、様々な医薬候補化合物・バイオプローブ・マテリアル創製などを目指す化学です。アジドとアルキンを用いるHuisgen[3+2]環化が、その代名詞的反応として知られています。

Huisgen[3+2]環化


  最近、このコンセプトをもとにした多くの論文が、シャープレス研のみならず、多数の研究グループから報告されてきています。

ツールとして広く使われているとはまだ言えませんが、近い将来、このコンセプトから生物学的・材料化学的技術が生まれてくるかもしれません。化学者フレデリック・サンガーがノーベル化学賞を2度獲得したように、再びノーベル賞を取れる可能性は十分に秘めています(※サンガーはサンガー法と呼ばれるタンパク質のアミノ酸配列決定法、DNA塩基配列の決定法を確立し、これによってノーベル賞を2度受賞している。RNAの配列決定法も確立しており、その業績から3度目もあり得るとすら言われている)。

David W. C. MacMillan (有機分子触媒)

nobel

触媒といえば、なんらかの金属を含む化合物を思い浮かべるかもしれません。しかし、有機分子そのものを触媒として反応を行うことができれば、扱い構造のチューニングが簡単かつ、安定・安価・環境に優しいなどのメリットがあります。このような触媒を有機分子触媒とよび、金属触媒の問題点を克服するアプローチの一つとして注目を浴びています。金属では進行させられない反応を触媒するものすらあります。

分野の中心的存在となっているのが、プリンストン大学のマクミラン教授。プロリンや、二級アミン有機分子触媒を用いる斬新な不斉合成法の開発で、世界をリードしています。安価なアミノ酸であるプロリンを使った不斉触媒分子間アルドール反応を発見したのは、スクリプス研究所のBarbas教授、Listらですが、それを超える勢いで新反応を開発しています。

2015-09-14_21-42-17

List-Barbas アルドール反応

アメリカ化学会もかなり彼に期待しているようです。触媒の反応性が低く、基質一般性に劣る、触媒の使用量が多いなど現状問題点は多数ありますが、触媒量を低減することができたなら、工業的に使われる可能性も大いに秘めています。マクミラン教授は未だ40歳前ですし、20年以内にノーベル化学賞を取る可能性もあるのではないでしょうか。

様々な有機分子触媒(中央がマクミランの開発したMacMillan触媒)

 

Phil S. Baran (天然物合成)

nobel

天然から産出される生物学的・有機合成化学的に「面白い」化合物を、いかにして人工的に合成するか?――そういった研究は100年以上前から行われており、ハーバード大の故ウッドワード教授、同じくハーバード大のコーリー教授などがその代表的研究者としてあげられます。ウッドワードの再来、ポストコーリー、合成化学のライジングサンと称される、スクリプス研究所のバラン教授はいまだ30歳。26歳のときから既に研究室を運営しており、多くの複雑な骨格を有する天然物をいとも簡単に合成しています。

最近になって彼は、Natureに「保護基フリーの天然物の全合成」を報告しました。これは純粋な天然物合成では稀なことであり、サイエンスとして認められる研究を行っている証拠でもあります。「天然物合成はもはやサイエンスではない」と言われて月日が経っているなかで、こういう優れた研究を行うグループもあるわけです。

同じく天然物合成分野でノーベル化学候補者にも挙げられていた、スクリプス研究所のニコラウ教授、コロンビア大学のダニシェフスキー教授、オックスフォード大学のレイ教授でも成しえていない「天然物合成でのノーベル化学賞」をいつの日か成し得る時が来るかもしれません。

とはいえ正直なところを言えば、化合物の酸化段階が少なく、カスケード反応(連続的な反応)によりうまく作っているように見せられる化合物を選択しているなど、ノーベル化学賞には程遠いのが現状です。ほとんど方法論が確立されているポリケチド系の化合物や、酸化段階が高いために既存法ではどんなに多段階かけても作れない化合物、テルペン系の化合物なども、このようにいとも簡単に作ることができたなら、「21世紀のアートな天然物合成」で受賞できる可能性はあるのではないでしょうか。

次回に続きます。

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. ケムステV年末ライブ2021開催報告! 〜今年の分子 and 人…
  2. ブロック共重合体で無機ナノ構造を組み立てる
  3. マテリアルズ・インフォマティクスのためのSaaS miHubの活…
  4. 構造式を楽に描くコツ!? テクニック紹介
  5. ホットキーでクールにChemDrawを使いこなそう!
  6. 【速報】2010年ノーベル化学賞決定!『クロスカップリング反応』…
  7. うっかりドーピングの化学 -禁止薬物と該当医薬品-
  8. 細胞が分子の3Dプリンターに?! -空気に触れるとファイバーとな…

注目情報

ピックアップ記事

  1. ハワイの海洋天然物(+)-Waixenicin Aの不斉全合成
  2. 有機合成のための触媒反応103
  3. サレン-Mn錯体
  4. 化学者のためのエレクトロニクス講座~有機半導体編
  5. メタルフリー C-H活性化~触媒的ホウ素化
  6. ブラウザからの構造式検索で研究を加速しよう
  7. 難溶性多糖の成形性を改善!新たな多糖材料の開発に期待!
  8. 第13回化学遺産認定~新たに3件を認定しました~
  9. 複雑なモノマー配列を持ったポリエステル系ブロックポリマーをワンステップで合成
  10. 光触媒に相談だ 直鎖型の一級アミンはアンモニア水とアルケンから

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2007年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP