[スポンサーリンク]

化学者のつぶやき

Marcusの逆転領域で一石二鳥

[スポンサーリンク]

[Co(bpy)3]3+誘導体はMarcusの逆転領域において励起状態から基底状態へ遷移することが実証された。さらに本錯体は、C–N結合形成反応における光触媒として利用可能である。

光触媒とMarcus理論

光触媒は、温和な条件でラジカル種を生成できるため、多様な変換反応に利用される。中でもIrやRuを用いた光触媒は、光触媒に重要な要素である、大きな励起状態と基底状態のエネルギー差|DG°|と長い励起寿命をもつことから、特に頻用され、光反応の発展に貢献してきた。加えて、これらの光触媒は、|DG°|や励起寿命を配位子の選択により調節できる点で汎用性が高い。一方最近では、レアメタルであるIrやRuから、より豊富に存在する第一遷移元素を用いた光触媒への代替が望まれている。しかし、第一遷移元素は第二、第三遷移元素に比べて配位子場分裂が小さく、MC状態がMLCT状態よりも低いエネルギー準位に位置するため、|DG°|が小さく励起寿命が短い、という課題がある。

ここで、DG°と励起寿命の関係はMarcus理論により理解でき、特に|DG°|の値によって二通りの挙動を示す(図1B)[1,2]。まず、|DG°|が再配向エネルギーlよりも小さい場合、|DG°|を大きくした際には励起寿命は短くなる(Marcusの正常領域)。これは、|DG°|が大きくなることで、励起状態から基底状態へ遷移する活性化エネルギーDGが小さくなることに起因する。一方、|DG°|がlよりも大きい場合には、|DG°|を大きくすると励起寿命が長期化する(Marcusの逆転領域)。そのため、Marcusの逆転領域の特性をもつ第一遷移元素は、上述の課題を克服した光触媒となりうる。

ミシガン州立大学のMcCuskerとプリンストン大学のMacMillanらは、第一遷移元素の中でも特に配位子場分裂|DG°|が大きいCo3+に着目した。Co(acac)3と[Co(en)3]3+では、|DG°|の大きい[Co(en)3]3+の方が励起寿命が長い[3]。このようにCo3+はMarcusの逆転領域のような性質を示すものの、その関連は明らかにされていない(図1C)。今回著者らは、配位子場により強く影響するビピリジン配位子を検討し、|DG°|の大きさと励起寿命の関係を求めることで、Co3+とMarcusの逆転領域との関連を解明できると考えた。また、|DG°|が大きく励起寿命の長いCo3+錯体は光触媒として利用可能だと期待した。

図1. (A) 光触媒の励起寿命と基底状態への遷移経路 (B) Marcus理論 (C) Co3+錯体の配位子場分裂と励起寿命

 

“Exploiting the Marcus Inverted Region for First-Row Transition Metal–Based Photoredox Catalysis”
Chan, A. Y.; Ghosh, A.; Yarranton, J. T.; Twilton, J.; Jin, J.; Arias-Rotondo, D. M.; Sakai, H. A.; McCusker, J. K.; MacMillan, D. W. C. Science 2023, 382, 191–197.
DOI: 10.1126/science.adj0612

論文著者の紹介

研究者:James K. McCusker

研究者の経歴:

1987                               B.S., Bucknell University, USA
1987                               M.S., Bucknell University, USA (Prof. Charles A. Root)
1992                               Ph.D., University of Illinois at Urbana-Champaign, USA (Prof. David N. Hendrickson)
1992–1994                  Postdoc, University of North Carolina at Chapel Hill, USA (Prof. Thomas J.Meyer)
1994–2001                  Assistant Professor of Chemistry, University of California at Berkeley, USA
2001–2008                  Associate Professor of Chemistry, Michigan State University, USA
2008–2017                  Professor of Chemistry, Michigan State University, USA
2011–2013                  Associate Chair for Research, Michigan State University, USA
2013–2017                  Director, Center of Research Excellence in Complex Materials (CORE-CM), Michigan State University, USA
2017–                             Michigan State University Foundation Professor in Chemistry

研究内容:遷移金属の励起種の超高速動力学、交換結合化合物の光物理学および光化学、電子・エネルギー移動力学における電子効果
研究者:David W. C. MacMillan
研究者の経歴:
1991                              B.S., University of Glasgow, USA
1996                              Ph.D., University of California, Irvine, USA (Prof. Larry E. Overman)
1996–1998                  Postdoc, Harvard University, USA (Prof. David A. Evans)
1998–2000                  Assistant Professor, University of California, Berkeley, USA
2000–2004                  Associate Professor, California Institute of Technology, USA
2004–2006                  Earle C. Anthony Professor of Chemistry, California Institute of Technology, USA
2006–2011                  A. Barton Hepburn Professor of Chemistry, Princeton University, USA
2006–                             Director of the Merck Center for Catalysis, Princeton University, USA
2011–                             James S. McDonnell Distinguished University Professor of Chemistry, Princeton University, USA
研究内容:有機触媒を用いた不斉反応の開発、可視光レドックス触媒を利用した反応開発

論文の概要

まず著者らは、ビピリジル配位子上に種々の置換基をもつCo3+錯体とMarcusの逆転領域との関連を調査した。すなわち、電子吸収スペクトルおよび過渡吸収スペクトルの測定により[Co(bpy)3]3+誘導体の|DG°|および励起寿命を算出した。その結果、|DG°|が大きくなるに従って励起寿命は長期化することが確認された(図2A)。さらに、これらの結果から無放射過程の反応速度定数knrと|DG°|の関係(Marcus plot)を図示した[4]。得られたMarcus plotから[Co(bpy)3]3+誘導体は、再配向エネルギーlが0.55 eV程度であり、|DG°|がlよりも大きいMarcusの逆転領域において励起状態から基底状態に遷移することが分かった。加えて、本錯体は可視光を吸収すること、酸化還元電位はEred* = 1.65 V (vs. SCE)程度であることから、本錯体が光触媒として働く可能性が示された。

そこで著者らは、実際に本Co3+錯体の光触媒としての活性を、C–N結合形成反応に応用することで確認した(図2B)。その結果、Co(acac)3と4,4′-Br2bpy存在下、アセトアニリド誘導体と芳香族ボロン酸に対し、K2S2O8を加え可視光を照射したところ、望みのアリール化体が良好な収率で得られた。詳細は論文を参照されたいが、Stern–Volmer実験ならびにラジカルクロック実験から、励起したCo触媒とアセトアニリドが反応し、アミジルラジカルを経由して、反応が進行することが示唆されている。

図2. (A) 励起寿命とマーカスプロット (B) C–N結合形成反応への応用

以上、[Co(bpy)3]3+誘導体は配位子の選択によりDG°を大きくすると、より励起寿命が長期化することが明らかにされた。また、本錯体は励起寿命が長く、かつ酸化力が高いことから、光触媒としてC–N結合形成反応にも応用できた。本錯体では酸化反応に注目しているが、Marcusの逆転領域を利用した還元力の高い光触媒の開発、応用にも期待したい。

 参考文献

  1. (a) Marcus, R. A. On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I. Chem. Phys. 1956, 24, 966–978. DOI: 10.1063/1.1742723 (b) Marcus, R. A. Theoretical Relations among Rate Constants, Barriers, and Brønsted Slopes of Chemical Reactions. J. Phys. Chem.1968, 72, 891–899. DOI: 10.1021/j100849a019 (c) Marcus, R. A.; Sutin, N. Electron Transfers in Chemistry and Biology. Biochim. Biophys. Acta Rev. Bioenerg. 1985, 811, 265–322. DOI: 10.1016/0304-4173(85)90014-X
  2. マーカス理論(Marcus theory): 電子移動の反応速度を記述する理論。電子移動反応は、反応前後で溶媒和の仕方が大きく異なるため、溶媒の再配向エネルギーlを考慮しなければならない点で、いわゆる”化学反応”と異なる。lは始原系の最安定核配置から反応を起こさずに生成系の最安定核配置まで移動させるのに必要なエネルギー。DGは、(DG°+l)2/4lで表される。
  3. (a) Ferrari, L.; Satta, M.; Palma, A.; Mario, L. D.; Catone, D.; O’Keeffe, P.; Zema, N.; Prosperi, T.; Turchini, S. A Fast Transient Absorption Study of Co(AcAc)3. Chem. 2019, 7, 348. DOI: 10.3389/fchem.2019.00348 (b) McCusker, J. K.; Walda, K. N.; Magde, D.; Hendrickson, D. N. Picosecond Excited-State Dynamics in Octahedral Cobalt(III) Complexes: Intersystem Crossing versus Internal Conversion. Inorg. Chem. 1993, 32, 394–399. DOI: 10.1021/ic00056a010 (c) Langford, C. H.; Malkhasian, A. Y. S.; Sharma, D. K. Subnanosecond Transients in the Spectra of Cobalt(III) Amine Complexes. J. Am. Chem. Soc. 1984, 106, 2727–2728. DOI: 10.1021/ja00321a057
  4. Marcus plot: 縦軸に電子移動の速度定数knrの自然対数、横軸に電子移動の駆動力– DG°をとった図。一般に、Marcusの正常領域ではDG°が大きくなるほど反応速度が大きくなり、逆転領域ではDG°が大きくなるほど速度定数が小さくなる。本論文においては、ln(knr)=ln(A)–[( DG°+l)2/4kBTl]で表される。knr: 無放射過程の速度定数、A: 頻度因子、kB: ボルツマン定数、T: 絶対温度
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 化学とウェブのフュージョン
  2. ポンコツ博士の海外奮闘録XXV ~博士,海外留学を終える~
  3. 糖鎖合成化学は芸術か?
  4. 「誰がそのシャツを縫うんだい」~新材料・新製品と廃棄物のはざま~…
  5. 【ケムステSlackに訊いてみた②】化学者に数学は必要なのか?
  6. 薬学部ってどんなところ?
  7. 有機合成化学の豆知識botを作ってみた
  8. 結晶データの登録・検索サービス(Access Structure…

注目情報

ピックアップ記事

  1. Reaxys Prize 2012ファイナリスト45名発表!
  2. 杏林製薬 耳鳴り治療薬「ネラメキサン」の開発継続
  3. 日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part2
  4. 博士の学位はただの飾りか? 〜所得から見た学位取得後のキャリア〜
  5. 宮坂 力 Tsutomu Miyasaka
  6. 研究室でDIY!割れないマニホールドをつくろう・改
  7. ガラス器具の洗浄にも働き方改革を!
  8. 南 安規 Yasunori Minami
  9. ねじれがあるアミド
  10. エーザイ、アルツハイマー治療薬でスウェーデン企業と提携

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年4月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP