[スポンサーリンク]

化学者のつぶやき

フラスコ内でタンパクが連続的に進化する

[スポンサーリンク]

ハーバード大学のDavid R. Liu教授らは、連続流動培養装置の中で、大腸菌から発現されるアミノアシルtRNA合成酵素が自律的に進化し、活性・選択性を大幅に向上する手法を開発しました。

“Continuous directed evolution of aminoacyl-tRNA synthetases”

Bryson, D. I.; Fan, C.; Guo, L. T.; Miller, C.; Söll, D.; Liu, D. R. Nat. Chem. Biol. 2017.  DOI: 10.1038/nchembio.2474.

1. 従来の分子進化法

実験室でのタンパク進化は、人にはデザインできないような高性能な変異型タンパクを生み出せる優れた技術です。タンパク進化法では、予測に基づいて遺伝子の特定の位置に変異を加えるのではなく、ランダムに変異を入れたDNAライブラリを作製し、スクリーニングを行うという流れを繰り返すことで、自然淘汰のようにタンパクの機能を進化させます。

図1. 従来のタンパク進化法

 

図1に、一般的なタンパク進化法の流れを示しています。

  1. 目的タンパクをコードしたDNAに、error-prone PCRや部位飽和変異導入法などによってランダムな変異を加え、DNAライブラリを作製する。
  2. 得られたプラスミドDNAを大腸菌などの宿主細胞に導入し、タンパクの発現を行う。
  3. 目的タンパクの特性に合わせてスクリーニングを行い、優良なタンパクを発現する宿主細胞を分離する。
  4. 宿主細胞の持つDNAを増幅して取り出す。

この流れを繰り返すことで、より良い機能を持ったタンパクを作り出すことができます。

しかし、この手法では1ラウンドの変異→スクリーニングを行うのに、通常1週間ほどかかります。分子進化法では、このラウンドを繰り返せば繰り返すほどタンパクの機能を向上させることができるため、早いペースで多くのラウンドを行える進化法が望まれます。

そこで、David R. Liu教授らは、この進化の過程を大腸菌に自律的に行わせ、数日で目的の機能を持ったタンパクを作り出す手法を開発しました。 [1]  今回発表された論文では、この手法を利用し、遺伝暗号の拡張において重要なアミノアシルtRNA合成酵素の活性・選択性を大幅に向上させることに成功しました。

2. ファージを用いた連続的タンパク進化法(PACE)

図2. ファージを用いた連続的タンパク進化法(PACE)

 

開発された手法は、Phage-Assisted Continuous Evolution (PACE)と呼ばれます(図2)。この方法では、外部から連続的に大腸菌を供給し、フラスコ内でファージ感染を行います。進化させたい目的タンパクの活性が高い場合、感染力の高いファージが生み出され、その遺伝子をさらに増幅させることができます。一方で、目的タンパクの活性が低い場合、新たに生み出されるファージの感染力が低く、その遺伝子は受け継がれることなく廃棄される、という流れになっています。

では、詳しい原理について見ていきましょう。この手法の鍵となるのは、以下の3点です。

  1. ランダムな遺伝子変異を誘発するプラスミド(M)を大腸菌に導入。
  2. ファージの感染に重要なpIIIタンパクの遺伝子(gIII)を、ファージから取り出し大腸菌に組み込んでおく。
  3. gIIIの発現が目的タンパクの活性に依存する仕組みを作る。

まず、1つ目のポイントについて。Liuらは、DNA複製においてランダムな変異を誘発するプラスミド(M)を開発しました。[1, 2]  このプラスミドには、DNA複製における校正機構を阻害する因子(dnaQ926;不活性型の3’→5’エキソヌクレアーゼ)と、DNA複製後のミスマッチ修復を抑制する因子(dam; 新生DNA鎖をメチル化する酵素)がコードされています。そのため、このプラスミドを大腸菌に導入しておくと、目的タンパクの遺伝子にランダム変異を頻繁におこせるようになります。

次に、2つ目のポイントについて。M13ファージは、外殻の先にあるpIIIタンパクを介して大腸菌に結合し、自身のDNAを挿入して感染します(図3)。pIIIタンパクの遺伝子(gIII)は、もともとファージ内のDNAにコードされていますが、Liuらはこれを取り除き、進化させたい目的タンパクの遺伝子に置き換えました(S)。そして、取り除いたgIII遺伝子を、大腸菌のプラスミド(A)に導入しました。

図3. M13ファージと大腸菌の遺伝子配置。gI〜gXはファージの遺伝子

 

最後に、3つ目のポイントについて。今回、目的タンパクとされたのは、古細菌由来のアミノアシルtRNA合成酵素(aaRS)です。この酵素は、DNA上のamber終止コドンに対して、特定のアミノ酸を対応させる働きを持っています。aaRSの働きがなければ、amberコドンは終止コドンであるため、遺伝子の翻訳が停止します。しかし、活性型のaaRSが存在する場合、amberコドンに特定のアミノ酸が導入されるため、翻訳が停止せずに、別の終止コドン(opalやochre終止コドン)の位置まで翻訳が続けられます。

今回の手法では、大腸菌内のプラスミド(A)にコードされたgIII遺伝子上に、amberコドンが配置されています。そのため、以下の流れが成り立ちます。

図4. PACE法によるaaRSの進化の仕組み

3. aaRSの進化の過程とセレクション強度の調節

図5. アミノアシルtRNA合成酵素の分子進化の過程。縦軸は、各時点でフラスコから回収されたファージの力価を示す(論文より)

 

この手法を用いて、LiuらはアミノアシルtRNA合成酵素の一つであるchPylRSの進化を行いました(図5)。chPylRSの活性が高くなるほど、基質のアミノ酸(BocK)がamberコドンの位置に導入され、gIIIの発現量が増大、つまりファージが増殖しやすくなります。

ここでLiuらは、進化段階に応じたセレクション強度の調節も行っています。進化の初期段階では、aaRSの活性が十分でないため、セレクションの条件が厳しすぎると、ファージが増幅できずに失われてしまいます。逆に最終段階では、より活性の高いaaRSを選別するため、セレクション強度を上げることが必要です。そのためLiuらは、図5の分子進化の0〜288 時間において、gIII遺伝子上に直接amberコドンを配置するのではなく、gIII遺伝子を転写するT7 RNAポリメラーゼの遺伝子上にamberコドンを配置しました。こうすることで、低活性なaaRSでもgIII遺伝子を発現することができ、ファージを増幅することができます。また、amberコドン(TAG)の数を徐々に増やしたり、培地中のaaRSの基質濃度[BocK]を下げていくことで、セレクション強度を段階的に上げるという工夫もなされています。

Liuらは、図5の分子進化の各段階でファージを取り出し、aaRSの配列を調べました。すると、V31IとT56P (120 h)、D257G (162 h)、H62Y (288 h)、A100E (408 h) の5つの変異が集中的に起こっていることが分かりました。これらの変異のうち、V31I, T56P, H62Y, A100Eの4つを実際にaaRSに導入してみると、 触媒効率が45倍も向上することが示されました。

今回のPACE実験にかかった時間は497時間なので、これは平均して268ラウンドもの分子進化を行ったことに値します。これだけの回数の分子進化を従来の手法で行うとすれば、数年かかってしまいます。それを数週間で、しかも自動で行うことができるというのが、この手法の大きな利点です。

4. おわりに

この手法は、目的タンパクの機能とgIIIの発現をうまくリンクすることさえできれば、どんなタンパクの進化にも応用できます。人の介入なしに、大腸菌がタンパクを自律的に進化してくれる魅力的な技術なので、今後、様々なタンパクへの応用が広がっていくことが期待されます。

参考文献

  1. Esvelt, M. K.; Carlson, J. C.; Liu, D. R. Nature 2011, 472, 499.  DOI: 10.1038/nature09929
  2. Badran, A. H.; Liu, D. R. Nat. Commun. 2015, 6, 8425. DOI: 10.1038/ncomms9425

関連書籍

関連リンク

 

kanako

kanako

投稿者の記事一覧

大学院生。化学科、ケミカルバイオロジー専攻。趣味はスポーツで、アルティメットフリスビーにはまり中。

関連記事

  1. 試薬会社にみるノーベル化学賞2010
  2. 学部生にオススメ:「CSJ カレントレビュー」で最新研究をチェッ…
  3. フラッシュ自動精製装置に新たな対抗馬!?: Reveleris(…
  4. 2009年ノーベル化学賞は誰の手に?
  5. 化学物質だけでiPS細胞を作る!マウスでなんと遺伝子導入なしに成…
  6. 有機合成化学協会誌7月号:ランドリン全合成・分子間interru…
  7. タンパクの「進化分子工学」とは
  8. 化学探偵Mr.キュリー9

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. オートファジーの化学的誘起で有害物質除去を行う新戦略「AUTAC」
  2. 酸素ボンベ爆発、男性死亡 
  3. Googleマイマップを持って学会に出かけよう!
  4. 研究者向けプロフィールサービス徹底比較!
  5. ハンチュ エステルを用いる水素移動還元 Transfer Hydrogenation with Hantzsch Ester
  6. 米ファイザー、今期業績予想を上方修正・1株利益1.68ドルに
  7. 人工タンパク質ナノブロックにより自己組織化ナノ構造を創る
  8. 【第一三共】抗血小板薬「プラスグレル」が初承認‐欧州で販売へ
  9. 長谷川 美貴 Miki Hasegawa
  10. YMC「水素吸蔵合金キャニスター」:水素を安全・効率的に所有!

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

その化合物、信じて大丈夫ですか? 〜創薬におけるワルいヤツら〜

はじめまして。薬学部で創薬化学を研究する傍ら、薬局薬剤師としても活動している D…

パーソナル有機合成装置 EasyMax 402 をデモしてみた

合成装置といえばなにを思い浮かべるでしょうか?いま話題のロボット科学者?それともカップリング…

湿度によって色が変わる分子性多孔質結晶を発見

第277回のスポットライトリサーチは、筑波大学 数理物質系 山本研究室 助教の山岸 洋(やまぎし ひ…

【書籍】機器分析ハンドブック1 有機・分光分析編

kindle版↓概要はじめて機器を使う学生にもわかるよう,代表的な分析機器の…

第46回「趣味が高じて化学者に」谷野圭持教授

第46回目の研究者インタビューです。今回のインタビューは第10回目のケムステVシンポ講演者の一人であ…

【山口代表も登壇!!】10/19-11/18ケミカルマテリアルJapan2020-ONLINE-

「ケミカルマテリアルJapan2020-ONLINEー(主催:株式会社化学工業日報社)」は、未来に向…

「誰がそのシャツを縫うんだい」~新材料・新製品と廃棄物のはざま~ 2

Tshozoです。前回の続き、②リチウムイオン電池についてです。なおこの関連の技術は進化が非常に早く…

炊きたてご飯の香り成分測定成功、米化学誌に発表 福井大学と福井県農業試験場

 福井大学と福井県農業試験場は、これまで難しいとされていた炊きたてご飯の香り成分の測定に成功したと米…

Chem-Station Twitter

PAGE TOP