[スポンサーリンク]

スポットライトリサーチ

植物の受精効率を高める糖鎖「アモール」の発見

第34回のスポットライトリサーチは、名古屋大学大学院理学研究科(東山研究室)ご出身の郡司(水上) 茜 さんにお願いしました。   今回の研究はおしべとめしべが絡む植物の受精過程に、ごくシンプルな二糖化合物が関わっている事実を突き止めたというものです。冒頭図はその化合物を大量精製する際に用いたトレニアという植物の写真です。先日プレスリリースおよび論文として公表されていたのを機に、紹介させていただくこととなりました。郡司さんは本研究にて博士号を取得し、現在は愛知学院大学で助教職に就かれています。

“The AMOR Arabinogalactan Sugar Chain Induces Pollen-Tube Competency to Respond to Ovular Guidance” Mizukami, G. A.; Inatsugi, R.; Jiao, J.; Kotake, T.; Kuwata, K.; Ootani, K.; Okuda, S.; Sankaranarayanan, S.; Sato, Y.; Maruyama, D.; Iwai. H.; Garénaux, E.; Sato, C.; Kitajima, K.; Tsumuraya, Y.; Mori, H.; Yamaguchi, J.; Itami,  K.; Sasaki, N.; Higashiyama, T. Curr. Biol. 2016, 26,1091. doi:10.1016/j.cub.2016.02.040

実はChem-Stationの山口代表も本研究に関わっています。自然のしくみに化学と生物の両面から迫る、ユニークな研究の一つです。現場からのお話を伺ってみました。

Q1. 今回のプレス対象となったのはどんな研究ですか?簡単にご説明ください。

植物において受精率を高める物質AMOR(アモール)を発見し、その活性を単純な二糖が担っていることを明らかにしました。 被子植物の受精が達成されるには、雌しべの柱頭に受粉した花粉から花粉管が発芽・伸長し、雌しべの奥深くにある胚珠まで到達することが必須です。雌しべには花粉管を受精可能な状態に活性化する物質が存在することが示唆されてきましたが、実体はこれまで明らかではありませんでした。私たちはトレニアという植物を用いて、初めてその物質の同定に成功しました。この物質は植物に特有なアラビノガラクタン糖鎖(AG糖鎖)を持ち、さらに合成糖を用いることで、この糖鎖の末端に存在する二糖だけで活性を持つことを明らかにしました。植物の糖鎖に特異的な二糖構造が植物細胞間の情報伝達活性を担うことを初めて示すことができました。

AMORアッセイ系. AMORを含んでいる培地を伸長している花粉管は、マイクロマニピュレータによって目の前に置いた胚珠の卵装置へと伸長方向を変えて誘引される.

図1. AMORアッセイ系. AMORを含んでいる培地を伸長している花粉管は、マイクロマニピュレータによって目の前に置いた胚珠の卵装置へと伸長方向を変えて誘引される.

図2. AMORの活性を担うメチルグルクロノシルガラクトースの構造.

図2. AMORの活性を担うメチルグルクロノシルガラクトースの構造.

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

生物学的アプローチにより、AMORの活性をAG糖鎖の末端の二糖が担っている可能性が示唆されましたが、この二糖は市場では販売されておらず、また糖を合成する術も無く、二糖の活性を確認したくても出来ない状況でした。そのような中、名古屋大学のトランスフォーマティブ生命分子研究所 (ITbM)に、所属していた東山研究室も参加することとなりました。そこでは異分野の融合が進められており、現早稲田大学理工学術院准教授でありChem-Stationの代表である山口潤一郎先生と出会うことができました。山口先生は非常に難しい二糖の合成に成功して下さり、二糖のみで活性が確認できた時はすごく興奮して、すぐに東山先生に報告しに行ったことを覚えています。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

AMORの活性の検出は、すべて独自のバイオアッセイ系を用いて行っています。そのため、使用する花の状態や培養時間、培地の状態などによって簡単に結果が左右されてしまい、どんなサンプルを用いても活性が全く検出できなくなる時期もありました。最初は原因を突き止めるために長い時間を取られてしまうことがありましたが、一つ一つの最適な条件を確立することによって、すぐに原因が突き止められるようになり、効率よく正確にアッセイを進められるようになりました。また恣意性を排除するため、アッセイするサンプルはブラインドにしておくなど、自分で出した結果に常に自信が持てるようにしました。

Q4. 将来は化学とどう関わっていきたいですか?

私は化学が専門では無いのですが、今後とも生物学者として化学と融合させながら再び新規の面白い現象を発見できたらと考えています。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

最後までお読みくださいましてありがとうございます。私の研究は上述の山口先生だけでなく、本当にたくさんの方々のご協力のもと進められ、一つの形にすることができました。また、そのような出会いがありましたのも、すべて東山先生のお力添えの賜物です。この場をお借りして深く御礼申し上げます。

関連リンク

研究者の略歴

sr_A_Gunji_1郡司(水上) 茜 (ぐんじ(みずかみ) あかね)

所属: 愛知学院大学薬学部生体有機化学講座 助教

略歴:
2008年3月 名古屋大学理学部生命理学科 卒業

2010年3月 名古屋大学大学院理学研究科博士前期課程 修了
2013年3月 名古屋大学大学院理学研究科博士後期課程 単位取得退学
2016年3月 博士(理学)取得

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 炭素繊維は鉄とアルミに勝るか? 2
  2. ハッピー・ハロウィーン・リアクション
  3. 脱水素型クロスカップリング重合法の開発
  4. ついに成功した人工光合成
  5. 高分子界の準結晶
  6. クリーンなラジカル反応で官能基化する
  7. 一流科学者たちの経済的出自とその考察
  8. 【速報】2010年ノーベル化学賞決定!『クロスカップリング反応』…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 化学企業のグローバル・トップ50が発表
  2. 文献管理ソフトを徹底比較!
  3. 武田薬、米国販売不振で11年ぶり減益 3月期連結決算
  4. 第93回日本化学会付設展示会ケムステキャンペーン!Part III
  5. 水素社会~アンモニアボラン~
  6. タンパクの骨格を改変する、新たなスプライシング機構の発見
  7. 超原子価ヨウ素を触媒としたジフルオロ化反応
  8. レビュー多すぎじゃね??
  9. 工業製品コストはどのように決まる?
  10. 電場を利用する効率的なアンモニア合成

関連商品

注目情報

注目情報

最新記事

【なんと簡単な!】 カーボンナノリングを用いた多孔性ナノシートのボトムアップ合成

第 164 回目のスポットライトリサーチは東京大学大学院新領域創成科学研究科 物質系専攻の森泰造 (…

「進化分子工学によってウイルス起源を再現する」ETH Zurichより

今回は2018年度のノーベル化学賞の対象となった進化分子工学の最前線でRNA・タンパク質工学を組み合…

アントニオ・M・エチャヴァレン Antonio M. Echavarren

アントニオ・M・エチャヴァレン(Antonio M. Echavarren、1955年3月25日–)…

スルホキシドの立体化学で1,4-ジカルボニル骨格合成を制す

イナミドと光学活性なアルケニルスルホキシドから、2位および3位に置換基をもつ1,4-ジカルボニル骨格…

サッカーボール型タンパク質ナノ粒子TIP60の設計と構築

第163回目のスポットライトリサーチは、慶應義塾大学理工学部 ・川上了史(かわかみ のりふみ)講師に…

不斉カルボニル触媒で酵素模倣型不斉マンニッヒ反応

ピリドキサール生体模倣触媒によるアリールN-ホスフィニルイミン類とグリシン類の不斉マンニッヒ反応が報…

PAGE TOP