[スポンサーリンク]

E

エッシェンモーザー・タナベ開裂反応 Eschenmoser-Tanabe Fragmentation

 

概要

α,β-エポキシケトンをトシルヒドラゾンに変換した後、塩基で処理すると開裂反応が起こる。生成物は非共役カルボニル基を持つアルキンである。 一般に、β位に置換基がある場合に収率よく進行する。

基本文献

  • Eschenmoser, A.; Felix, D.; Ohloff, G. Helv. Chim, Acta 1967, 50, 708. doi:10.1002/hlca.19670500232
  • Schreiber, J.; Felix, D.; Eschenmoser, A.; Winter, M.; Gautschi, F.; Schulte-Elte, K. H.; Sundt, E.; Ohloff, G.; Kalovoda, J.; Kaufmann, H.; Wieland, P.; Anner, G. Helv. Chim. Acta 1967,
    50, 2101. doi:10.1002/hlca.19670500747
  • Tanabe, M.; Crowe, D. F.; Dehn, R, L,; Detre, G. Tetrahedron Lett. 1967, 8, 3943. doi:10.1016/S0040-4039(01)89757-4
  • Felix, D.; Schreiber, J.; Ohloff, G.; Eschenmoser, A. Helv. Chim. Acta 1971, 54, 2896. doi:10.1002/hlca.19710540855
  • Reese, C. B.; Sanders, H. P. Synthesis 1981, 276

 

反応機構

トシルヒドラゾンに塩基を作用させるとオキシラン環が開裂してジアゾ中間体が生じ、続いて窒素とスルホン基が脱離するとともに、アルキンとケトンが生成する。
on-yne10.gif

反応例

β位に置換基のない化合物を同様な条件で処理すると数多くの生成物が得られ、目的のアルキンやアルデヒドは得られない。しかし、2,4-ジニトロフェニルスルホニルヒドラジンを用いれば生じるヒドラゾン中間体は穏やかな条件下で開裂するため、アルデヒドとアルキンを収率良く得ることができる。以下は適用例。[1] on-yne4.gif
Galbulimima alkaloid GB13の合成[2] eschenmoser_fragment_4.gif
Mercicarpineの全合成[3]:セミカルバゾン型基質を用いる改良法[4]を使用している。
eschenmoser_fragment_5.gif

実験手順

 

実験のコツ・テクニック

 

参考文献

[1] Corey, E. J.; Sachdev, H. S. J. Org. Chem. 1975,40, 579. DOI: 10.1021/jo00893a008

[2] Mander, L. N.; McLachlan, M. M. J. Am. Chem. Soc. 2003125, 2400. DOI: 10.1021/ja029725o

[3] Nakajima, R.; Ogino, T.; Yokoshima, S.; Fukuyama, T. J. Am. Chem. Soc. 2010, 132, 1236. DOI: 10.1021/ja9103233

[4] MacAlpine, G. A.; Warkentin, J. Can. J. Chem. 197856, 308.

 

関連反応

 

関連書籍

 

外部リンク

The following two tabs change content below.
Hiro

Hiro

Hiro

最新記事 by Hiro (全て見る)

関連記事

  1. シュタウディンガー反応 Staudinger Reaction
  2. マッテソン反応 Matteson Reaction
  3. ハリース オゾン分解 Harries Ozonolysis
  4. ブレデレック オキサゾール合成 Bredereck Oxazol…
  5. ヘル・フォルハルト・ゼリンスキー反応 Hell-Volhard-…
  6. DABSOを用いるSO2導入反応 SO2 incorporati…
  7. スズアセタールを用いる選択的変換 Selective Trans…
  8. クラウソン=カース ピロール合成 Clauson-Kaas Py…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 二段励起型可視光レドックス触媒を用いる還元反応
  2. ブレイズ反応 Blaise Reaction
  3. リチウム二次電池における次世代電極材料の開発【終了】
  4. 第五回 超分子デバイスの開発 – J. Fraser Stoddart教授
  5. 『Ph.D.』の起源をちょっと調べてみました② 化学(科学)編
  6. ついに成功した人工光合成
  7. 第七回 巧みに非共有結合相互作用をつかうー Vince Rotello教授
  8. Cyclopropanes in Organic Synthesis
  9. 学振申請書を磨き上げる11のポイント [文章編・前編]
  10. ナノスケールの虹が世界を変える

関連商品

注目情報

注目情報

最新記事

化合物の秤量

数mgを量り取るといったことは多くの化学系の研究者の皆様が日常的にされていることかと思います。しかし…

小スケールの反応で気をつけるべきこと

前回はスケールアップについて書いたので、今回は小スケールの反応での注意すべきことについてつらつらと書…

尿から薬?! ~意外な由来の医薬品~ その1

Tshozoです。今まで尿に焦点をあてた記事を数回書いてきたのですが、それを調べるうちに「1…

OPRD誌を日本プロセス化学会がジャック?

OPRD(Organic Process Research & Development)はJ…

ワークアップの悪夢

みなさま、4月も半分すぎ、新入生がラボに入ってきていると思います。そんな頃によく目にするのが、エマル…

単一分子の電界発光の機構を解明

第194回のスポットライトリサーチは、理化学研究所Kim表面界面科学研究室で研究員を務められていた、…

Chem-Station Twitter

PAGE TOP