[スポンサーリンク]

化学者のつぶやき

そうだ、アルミニウムを丸裸にしてみようじゃないか

[スポンサーリンク]

Nヘテロ環ボリロキシ配位子を用いることで、アニオン性かつ非環式、さらには“裸“という極めて不安定なアルミニル錯体の合成が達成された。このアルミニル錯体は、金属中心でベンゼンと可逆的に[4+1]環化付加反応するなど特異な反応性をもつ。

の非環式アルミニル錯体

特殊な電子構造を作り込んだ典型元素を用いて、低分子を活性化させるのは魅力的な試みである[1]。中でも、一見変わった電子構造をもつアニオン性アルミニル種[AlX2]は、高い求核性とアルミニウムが本来もつ求電子性から、炭化水素および水素、二酸化炭素などを活性化できる高い反応性を有する(図1A, I and II)[2]。これら[AlX2]はキレート配位子による環式錯体であるが、非環式アニオン性アルミニル錯体も合成されている(図1A, III)[3]。非環式錯体は、環式錯体よりも柔軟性が高く、配位挟角のとりうる角度範囲が広い。そのため、中心金属の軌道の混成状態に対する影響が大きく、非環式錯体の方がより高い反応性を獲得できる可能性がある。しかし、この非環式アルミニル錯体IIIはカリウムカチオンとの相互作用による安定化を受けている。

一方、以前著者らは新規N-ヘテロ環ボリロキシ(NHBO)配位子を開発した(図1B)[4]。NHBO配位子は、酸素原子の高い電気陰性度による中心元素の非共有電子対の安定化およびDipp(2,6-diisopropylphenyl)基の嵩高さによる中心元素の保護が可能である。実際、NHBO配位子により14族元素中心とする非環式二配位ジオキシカルベンの合成が達成されている。

今回著者らは、アニオン性非環式アルミニル錯体をカウンターカチオンによる安定化のない“裸”の錯体とすることで、より高い反応性の発現を目指した。極めて反応性の高い(不安定な)錯体を合成するために、著者らの開発したNHBO配位子を用い、かつ、カリウムカチオンを[2.2.2]クリプタンドで捕捉することで、のアニオン性非環式アルミニル錯体の合成を達成した(図1C)。この錯体はアルミニウム中心でベンゼンと可逆的な[4+1]環化付加反応することを明らかにした。

図1. (A) アルミニル化合物 (B) NHBO配位子および非環式錯体形成 (C) NHBO配位子を用いた“裸”の非環式アルミニル錯体

 

“Reversible [4 + 1] Cycloaddition of Arenes by a “Naked” Acyclic Aluminyl Compound”
Sarkar, D.; Vasko, P.; Roper, A. F.; Crumpton, A. E.; Roy, M. M. D.; Griffin, L. P.; Bogle, C.; Aldridge, S. J. Am. Chem. Soc.2024, 146, 11792–11800. DOI: 10.1021/jacs.4c00376

論文著者の紹介

研究者:Debotra Sarkar

研究者の経歴:

2015          M.Sc., Indian Institute of Technology, Delhi, India
2020          Ph.D., Technical University Munich, Germany (Prof. Shigeyoshi Inoue)
2020–2021                  Postdoc, Karlsruhe Institute of Technology (KIT), Germany (Prof. Peter Roesky and Prof. Vadapalli Chandrasekhar)
2022–                             Postdoc, University of Oxford, UK (Prof. Simon Aldridge)

研究内容:低原子価錯体合成、NHC配位子合成

研究者:Simon Aldridge

研究者の経歴:

1992 B.S., Jesus College, University of Oxford, UK
1996 Ph.D., University of Oxford, UK (Prof. Tony Downs)
1996–1997 Postdoc, University of Notre Dame, USA (Prof. Thomas Fehlner)
1997–1998 Postdoc, Imperial College London, UK (Prof. D. Michael P. Mingos)
1998–2004                  Lecturer, School of Chemistry, Cardiff University, UK
2004–2006 Senior lecturer, Cardiff University, UK
2007–2010                  Senior lecturer, University of Oxford, UK
2010–                           Professor, University of Oxford, UK

研究内容:13および14族原子を配位原子とする新規配位子の設計と合成、FLPによる低分子活性化

論文の概要

“裸“のアニオン性非環式アルミニル錯体の合成について述べる(図2A)。まず、[Cp*Al]4 (Cp* = C5Me5)をベンゼン中でNHBO配位子K[OB(NDippCH)2](1)と配位子交換させ、ビスボリロキシアルミニル錯体2を高収率で得た[5]。X線結晶構造解析から、2におけるカリウムカチオンはNHBO配位子の2つの酸素原子と相互作用していることが確かめられた。次に、2に[2.2.2]クリプタンドを作用させるとカリウムカチオンが捕捉されて、“裸“の非環式アルミニル錯体3の合成を達成した。錯体2はベンゼン中安定であるのに対し、3はアルミニウム中心でベンゼンと[4+1]環化付加反応し付加体4となる。また、付加体4を真空引きするとベンゼンが脱離し、3が再生する稀な現象も見いだした。

錯体3の高い反応性を明らかにすべく、X線構造解析とDFT計算を行った。錯体2は、酸素原子とアルミニウムに加えてカリウムカチオンで四員環を形成しており、∠O–Al–Oは92.3°であった(図2B上)。一方、錯体3はカリウムカチオンとの相互作用をもたないため、∠O–Al–Oが100.0°であった。またDFT計算から、錯体23で反応性の起源となるアルミニウム上の非共有電子対が収納されているσ軌道、および、それに直交するpπ軌道のエネルギー準位を比較した(図2B下)。σ軌道のエネルギー準位は、2(–3.94 eV)よりも3(–2.77 eV)の方が高い。これはカリウムカチオンによる安定化効果の消失と配位挟角の増大による軌道の再混成によるものと考えられる。pπ軌道のエネルギー準位においても、2(+0.40 eV)よりも3(+1.52 eV)の方が高い。これは、カリウムカチオンの除去により、酸素原子からのπ供与が強くなり、反結合性のpπ軌道のエネルギー準位が上昇したと考えられる。酸素原子からのπ供与の増大は、酸素-アルミニウム結合の短縮からも確かめられた。これらのエネルギー準位の上昇が、錯体3に高い反応性をもたらしたと言える。さらに著者らは、反応経路のDFT計算から、カリウムカチオンによる安定化をもたない3のみ[4+1]環化付加反応することを裏付けた(詳細は論文参照)。また、ベンゼン以外の基質との反応性も確認しており、アントラセンとは[4+1]環化付加反応において、23は位置選択性が異なることも明らかにしている。

図2. (A) “裸“の非環式アルミニル錯体の合成および反応性 (B) X線構造およびエネルギー準位

以上、NHBO配位子を用いた“裸“の非環式アルミニル錯体の報告であった。目を引くような著者らの錯体合成の続報に乞うご期待である。

参考文献

  1. (a) Power, P. P. Main-Group Elements as Transition Metals. Nature 2010, 463, 171–177. DOI: 1038/nature08634 (b) Weetman, C.; Inoue, S. The Road Travelled: After Main‐Group Elements as Transition Metals. ChemCatChem 2018, 10, 4213–4228. DOI: 10.1002/cctc.201800963
  2. (a) Hicks, J.; Vasko, P.; Heilmann, A.; Goicoechea, J. M.; Aldridge, S. Arene C–H Activation at Aluminium(I): meta Selectivity Driven by the Electronics of SNAr Chemistry. Angew. Chem., Int. Ed. 2020, 59, 20376–20380. DOI: 10.1002/anie.202008557 (b) Hicks, J.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. Reversible, Room-Temperature C–C Bond Activation of Benzene by an Isolable Metal Complex. J. Am. Chem. Soc. 2019, 141, 11000–11003. DOI: 10.1021/jacs.9b05925 (c) Hicks, J.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. Synthesis, Structure and Reaction Chemistry of a Nucleophilic Aluminyl Anion. Nature 2018, 557, 92–95. DOI: 10.1038/s41586-018-0037-y (d) Hicks, J.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. The Aluminyl Anion: A New Generation of Aluminium Nucleophile. Angew. Chem., Int. Ed. 2021, 60, 1702–1713. DOI: 10.1002/anie.202007530 (e) Coles, M. P.; Evans, M. J. The Emerging Chemistry of the Aluminyl Anion. Chem. Commun. 2023, 59, 503–519. DOI: 10.1039/D2CC05963K
  3. Jackson, R. A.; Matthews, A. J. R.; Vasko, P.; Mahon, M. F.; Hicks, J.; Liptrot, D. J. An Acyclic Aluminyl Anion. Chem. Commun. 2023, 59, 5277–5280. DOI: 10.1039/D3CC01317K
  4. Loh, Y. K.; Ying, L.; Ángeles Fuentes, M.; Do, D. C. H.; Aldridge, S. An N‐Heterocyclic Boryloxy Ligand Isoelectronic with N‐Heterocyclic Imines: Access to an Acyclic Dioxysilylene and Its Heavier Congeners. Angew. Chem., Int. Ed. 2019, 58, 4847–4851. DOI: 10.1002/anie.201812058
  5. (a) Boronski, J. T.; Thomas-Hargreaves, L. R.; Ellwanger, M. A.; Crumpton, A. E.; Hicks, J.; Bekiş, D. F.; Aldridge, S.; Buchner, M. R. Inducing Nucleophilic Reactivity at Beryllium with an Aluminyl Ligand. J. Am. Chem. Soc. 2023, 145, 4408–4413. DOI: 10.1021/jacs.3c00480 (b) Denker, L.; Trzaskowski, B.; Frank, R. “Give Me Five” – an Amino Imidazoline-2-Imine Ligand Stabilises the First Neutral Five-Membered Cyclic Triel(I) Carbenoides. Chem. Commun. 2021, 57, 2816–2819. DOI: 10.1039/D1CC00010A (c) Ganesamoorthy, C.; Loerke, S.; Gemel, C.; Jerabek, P.; Winter, M.; Frenking, G.; Fischer, R. A. Reductive Elimination: A Pathway to Low-Valent Aluminium Species. Chem. Commun. 2013, 49, 2858. DOI: 10.1039/c3cc38584a
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. SNS予想で盛り上がれ!2020年ノーベル化学賞は誰の手に?
  2. 液体中で高機能触媒として働くペロブスカイト酸化物の開発
  3. なぜ青色LEDがノーベル賞なのか?ー性能向上・量産化編
  4. 電子を閉じ込める箱: 全フッ素化キュバンの合成
  5. 有機合成化学協会誌2019年4月号:農薬・導電性電荷移動錯体・高…
  6. 有機合成化学協会誌2025年4月号:リングサイズ発散・プベルル酸…
  7. 第20回ケムステVシンポ『アカデミア創薬 A to Z』を開催し…
  8. 実験と機械学習の融合!ホウ素触媒反応の新展開と新理解

注目情報

ピックアップ記事

  1. 「男性型脱毛症薬が登場」新薬の承認を審議
  2. Carl Boschの人生 その6
  3. 春日大社
  4. 大阪大学インタラクティブ合宿セミナーに参加しました
  5. C(sp3)-Hアシル化を鍵とするザラゴジン酸Cの全合成
  6. ヘンリー反応 (ニトロアルドール反応) Henry Reaction (Nitroaldol Reaction)
  7. 化学者にお勧めのノートPC
  8. 砂塚 敏明 Toshiaki Sunazuka
  9. Nature主催の動画コンペ「Science in Shorts」に応募してみました
  10. 【書籍】10分間ミステリー

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年7月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

インドの農薬市場と各社の事業戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、インド…

【味の素ファインテクノ】新卒採用情報(2027卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。…

味の素グループの化学メーカー「味の素ファインテクノ社」を紹介します

食品会社として知られる味の素社ですが、味の素ファインテクノ社はその味の素グループ…

味の素ファインテクノ社の技術と社会貢献

味の素ファインテクノ社は、電子材料の分野において独創的な製品を開発し、お客様の中にイノベーションを起…

サステナブル社会の実現に貢献する新製品開発

味の素ファインテクノ社が開発し、これから事業に発展して、社会に大きく貢献する製品…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP