[スポンサーリンク]

化学者のつぶやき

リガンド指向性化学を用いたGABAA受容体の新規創薬探索法の開発

[スポンサーリンク]

γ-アミノ酪酸(GABA)は神経伝達物質として知られているアミノ酸です。同じ名前のチョコレート菓子が売れられているので、耳にしたことがある人が多いと思います。このGABAを認識するGABAA受容体はうつ病や統合失調症などの精神疾患に関係していることが知られているため、創薬ターゲットとして注目されています。しかしながらGABAA受容体に対する効率的な創薬探索法は限られていました[1]

最近、京都大学の清中准教授、浜地教授らは独自に開発したタンパク質の化学修飾法(LDAI化学)[2]及びBFQR(bimolecular fluorescence quenching and recovery)法を用いてGABAA受容体の蛍光センサー化を行い、効率的な創薬探索法を確立しました。そして開発した手法を用いて、今までとは全く異なる構造を有するGABAA受容体に対する創薬候補化合物を見出しました。

Discovery of allosteric modulators for GABAA receptors by ligand-directed chemistry

Yamaura, K.; Kiyonaka, S.; Numata, T.; Inoue, R.; Hamachi, I. Nat. Chem. Biol.2016. DOI: 10.1038/nchembio.2150

今回は本論文について紹介したいと思います。

なぜGABAA受容体に対する創薬探索が困難なのか?

GABAA受容体はたんぱく質5つから構成されるイオンチャネル型受容体です。現在報告されているGABAA受容体に存在する薬剤結合部位は、構成するタンパク質境界に存在しているため、詳細な構造情報を得ることが困難です。この構造的不明瞭さが効率的な創薬スクリーニング法の開発に大きな弊害を与えています。

GABAA受容体

GABAA受容体

 

BFQR法とは

では今回報告されたBFQR法とはどういうものでしょうか。BFQR法は蛍光性バイオセンサーを用いた創薬探索法で、原理は、

  1. 蛍光分子–受容体(F0)を用意する
  2. F0にリガンド分子結合消光剤(Gaba–Q)を作用させることでFRETがおこり、蛍光が消光した状態(F1)になる
  3. 標的の結合部位と相互作用する化合物を加えると、消光剤が追い出され蛍光が回復する(F2)
  4. 蛍光の回復の割合(F2/F1)が大きくなる化合物が標的の結合部位と強く相互作用していると評価する
BFQR法

BFQR法

 

近年このような蛍光性バイオセンサーを用いて蛍光の変化を観察することで創薬探索を行う方法が報告されつつあります[3]。スループット性が高く非常に強力な手法ですが、弱点があります。それは蛍光分子–受容体(F0)を構築するために、標的タンパク質の詳細な構造がわからなければならないことです。そのため構造が不明瞭であるGABAA受容体の蛍光性バイオセンサーの構築は困難を極めます。

ここで今回、筆者らは独自に開発した「リガンド指向型ラベル化法」を用いることでこの問題点を解決しました。リガンド指向型ラベル化法の詳細な説明は割愛させていただきますが、重要なことは目的タンパク質の詳細な構造がわからなくとも、薬剤結合部位と相互作用する化合物さえがあれば、薬剤結合部位をマスクすることなく蛍光分子を導入することができるということです。筆者らはこのリガンド指向型ラベル化法をもちいることで適切な位置に蛍光分子を導入し、GABAA受容体の蛍光性バイオセンサーの構築に成功しました。

新規創薬探索法の全体像

新規創薬探索法の全体像

 

新規化合物の発見

このように開発した蛍光性バイオセンサーを用いて、今回はベンゾジアゼピン結合部位と相互作用する化合物の探索を行っています。結果としては市販の化合物ライブラリーの1280化合物から薬剤結合部位と相互作用する4つの分子を見出しました。これらの化合物の中でILTGとflumazenilはベンゾジアゼピン結合部位と相互作用することが既に知られているものでしたが、PPTとTBBに関しては新規化合物でした。しかもこれら二つの化合物を詳細に調べると、驚くべきことにベンゾジアゼピン結合部位に結合していないことがわかりました!しかし別の方法で調べるとPPTとTBBはちゃんとGABAA受容体には作用していることは確認できています。

ヒット化合物

ヒット化合物

 

スクリーニング範囲が拡大!

それでは何故ベンゾジアゼピン結合部位と相互作用しないにもかかわらず消光したのでしょうか。詳細は論文を見ていただけたらと思いますが、PPTとTBBはベンゾジアゼピン結合部位とは異なる部分に作用し、その結果受容体の構造が変化することで消光剤と蛍光団とがFRETが起きない位置関係になることで消光しなくなったと結論付けています。

これは筆者たちも意外だったと思います。最初の目論見では競合的な結合のスクリーニングしかできないと予想していたところに、このような非競合的に結合する化合物を見つけ出すことができたのはラッキーだったのではないでしょうか。偶然にもBFQR法は競合的・非競合的に結合する化合物を一挙にスクリーニングできる方法だったのです。

 

おわりに

筆者らが論文中でも述べていますが、本手法のリミテーションとして”有能な”リガンド分子がなければセンサーを構築できないということです。また標的の薬剤結合部位近辺に求核性アミノ酸残基も必要です。しかしながら本手法は構造が不明瞭な他の受容体の新規薬剤探索にも応用できる可能性を秘めているという点で非常に興味深い方法論ではないかと思います。

今回見出した新たな化合物の行く末、そしてBFQR法の他のターゲットへの適用と今後の展開が非常に気になりますね。

 

参考文献

  1. 論文 Supplementary Table 2
  2. Fujishima, S. H.; Yasui, R.; Miki, T.; Ojida, A.; Hamachi, I. J. Am. Chem. Soc. 2012, 134, 3961. DOI: 10.1021/ja2108855
  3. (a) Simard, J. R.; Getlik, M.; Grütter, C.; Pawar, V.; Wulfert, S.; Rabiller, M.; Rauh, D. J. Am. Chem. Soc. 2009, 131, 13286. DOI: 10.1021/ja902010p (b) Brun, M.; Tan, K.-T.; Nakata, E.; Hinner, M.; Johnsson, K. J Am Chem Soc 2009, 131, 5873. DOI: 10.1021/ja900149e

 

The following two tabs change content below.
goatfish

goatfish

専門は有機化学です。有機合成と運動さえできればもう何もいりません。

関連記事

  1. インドールの触媒的不斉ヒドロホウ素化反応の開発
  2. シリカゲルの小ネタを集めてみた
  3. Z-選択的オレフィンメタセシス
  4. 【書籍】化学探偵Mr.キュリー5
  5. 落葉の化学~「コロ助の科学質問箱」に捧ぐ
  6. 研究助成情報サイト:コラボリー/Grants
  7. ケムステイブニングミキサー2016へ参加しよう!
  8. Dead Endを回避せよ!「全合成・極限からの一手」⑥

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ウォルフガング-クローティル Wolfgang Kroutil
  2. 『国際化学オリンピック』 日本代表が決定
  3. 新しいエポキシ化試薬、Triazox
  4. ダイヤモンドライクカーボン
  5. ロジウム(II)アセタート (ダイマー):Rhodium(II) Acetate Dimer
  6. アルケンのE/Zをわける
  7. ルチッカ大員環合成 Ruzicka Large Ring Synthesis
  8. 直径100万分の5ミリ極小カプセル 東大教授ら開発
  9. アメリ化学会創造的有機合成化学賞・受賞者一覧
  10. 3-ベンジル-5-(2-ヒドロキシエチル)-4-メチルチアゾリウムクロリド / 3-Benzyl-5-(2-hydroxyethyl)-4-methylthiazolium Chloride

関連商品

注目情報

注目情報

最新記事

赤外光で分子の結合を切る!

第224回のスポットライトリサーチは、東京大学生産技術研究所芦原研究室の森近一貴(もりちか いっき)…

トム・マイモニ Thomas J. Maimone

トーマス・J・マイモニ(Thomas J. Maimone、1982年2月13日–)は米国の有機化学…

キャリアデザイン研究講演会~化学研究と企業と君との出会いをさがそう!~

詳細はこちら:https://csjkinki.com/career/日時…

世界のエリートが今一番入りたい大学 ミネルバ

概要・校舎がない(4年間で世界の7都市をめぐる)・教師は「講義」も「テスト」もしない…

鴻が見る風景 ~山本尚教授の巻頭言より~

Tshozoです。先日公開され色々話題を呼んだ山本尚 元日本化学会会長による日本化学会論説 巻頭言(…

C–NおよびC–O求電子剤間の還元的クロスカップリング

C–N求電子剤とC–O求電子剤間のクロスカップリング反応が初めて開発された。有機化合物中に普遍的に存…

Chem-Station Twitter

PAGE TOP