[スポンサーリンク]

化学者のつぶやき

リガンド指向性化学を用いたGABAA受容体の新規創薬探索法の開発

[スポンサーリンク]

γ-アミノ酪酸(GABA)は神経伝達物質として知られているアミノ酸です。同じ名前のチョコレート菓子が売れられているので、耳にしたことがある人が多いと思います。このGABAを認識するGABAA受容体はうつ病や統合失調症などの精神疾患に関係していることが知られているため、創薬ターゲットとして注目されています。しかしながらGABAA受容体に対する効率的な創薬探索法は限られていました[1]

最近、京都大学の清中准教授、浜地教授らは独自に開発したタンパク質の化学修飾法(LDAI化学)[2]及びBFQR(bimolecular fluorescence quenching and recovery)法を用いてGABAA受容体の蛍光センサー化を行い、効率的な創薬探索法を確立しました。そして開発した手法を用いて、今までとは全く異なる構造を有するGABAA受容体に対する創薬候補化合物を見出しました。

Discovery of allosteric modulators for GABAA receptors by ligand-directed chemistry

Yamaura, K.; Kiyonaka, S.; Numata, T.; Inoue, R.; Hamachi, I. Nat. Chem. Biol.2016. DOI: 10.1038/nchembio.2150

今回は本論文について紹介したいと思います。

なぜGABAA受容体に対する創薬探索が困難なのか?

GABAA受容体はたんぱく質5つから構成されるイオンチャネル型受容体です。現在報告されているGABAA受容体に存在する薬剤結合部位は、構成するタンパク質境界に存在しているため、詳細な構造情報を得ることが困難です。この構造的不明瞭さが効率的な創薬スクリーニング法の開発に大きな弊害を与えています。

GABAA受容体

GABAA受容体

 

BFQR法とは

では今回報告されたBFQR法とはどういうものでしょうか。BFQR法は蛍光性バイオセンサーを用いた創薬探索法で、原理は、

  1. 蛍光分子–受容体(F0)を用意する
  2. F0にリガンド分子結合消光剤(Gaba–Q)を作用させることでFRETがおこり、蛍光が消光した状態(F1)になる
  3. 標的の結合部位と相互作用する化合物を加えると、消光剤が追い出され蛍光が回復する(F2)
  4. 蛍光の回復の割合(F2/F1)が大きくなる化合物が標的の結合部位と強く相互作用していると評価する
BFQR法

BFQR法

 

近年このような蛍光性バイオセンサーを用いて蛍光の変化を観察することで創薬探索を行う方法が報告されつつあります[3]。スループット性が高く非常に強力な手法ですが、弱点があります。それは蛍光分子–受容体(F0)を構築するために、標的タンパク質の詳細な構造がわからなければならないことです。そのため構造が不明瞭であるGABAA受容体の蛍光性バイオセンサーの構築は困難を極めます。

ここで今回、筆者らは独自に開発した「リガンド指向型ラベル化法」を用いることでこの問題点を解決しました。リガンド指向型ラベル化法の詳細な説明は割愛させていただきますが、重要なことは目的タンパク質の詳細な構造がわからなくとも、薬剤結合部位と相互作用する化合物さえがあれば、薬剤結合部位をマスクすることなく蛍光分子を導入することができるということです。筆者らはこのリガンド指向型ラベル化法をもちいることで適切な位置に蛍光分子を導入し、GABAA受容体の蛍光性バイオセンサーの構築に成功しました。

新規創薬探索法の全体像

新規創薬探索法の全体像

 

新規化合物の発見

このように開発した蛍光性バイオセンサーを用いて、今回はベンゾジアゼピン結合部位と相互作用する化合物の探索を行っています。結果としては市販の化合物ライブラリーの1280化合物から薬剤結合部位と相互作用する4つの分子を見出しました。これらの化合物の中でILTGとflumazenilはベンゾジアゼピン結合部位と相互作用することが既に知られているものでしたが、PPTとTBBに関しては新規化合物でした。しかもこれら二つの化合物を詳細に調べると、驚くべきことにベンゾジアゼピン結合部位に結合していないことがわかりました!しかし別の方法で調べるとPPTとTBBはちゃんとGABAA受容体には作用していることは確認できています。

ヒット化合物

ヒット化合物

 

スクリーニング範囲が拡大!

それでは何故ベンゾジアゼピン結合部位と相互作用しないにもかかわらず消光したのでしょうか。詳細は論文を見ていただけたらと思いますが、PPTとTBBはベンゾジアゼピン結合部位とは異なる部分に作用し、その結果受容体の構造が変化することで消光剤と蛍光団とがFRETが起きない位置関係になることで消光しなくなったと結論付けています。

これは筆者たちも意外だったと思います。最初の目論見では競合的な結合のスクリーニングしかできないと予想していたところに、このような非競合的に結合する化合物を見つけ出すことができたのはラッキーだったのではないでしょうか。偶然にもBFQR法は競合的・非競合的に結合する化合物を一挙にスクリーニングできる方法だったのです。

 

おわりに

筆者らが論文中でも述べていますが、本手法のリミテーションとして”有能な”リガンド分子がなければセンサーを構築できないということです。また標的の薬剤結合部位近辺に求核性アミノ酸残基も必要です。しかしながら本手法は構造が不明瞭な他の受容体の新規薬剤探索にも応用できる可能性を秘めているという点で非常に興味深い方法論ではないかと思います。

今回見出した新たな化合物の行く末、そしてBFQR法の他のターゲットへの適用と今後の展開が非常に気になりますね。

 

参考文献

  1. 論文 Supplementary Table 2
  2. Fujishima, S. H.; Yasui, R.; Miki, T.; Ojida, A.; Hamachi, I. J. Am. Chem. Soc. 2012, 134, 3961. DOI: 10.1021/ja2108855
  3. (a) Simard, J. R.; Getlik, M.; Grütter, C.; Pawar, V.; Wulfert, S.; Rabiller, M.; Rauh, D. J. Am. Chem. Soc. 2009, 131, 13286. DOI: 10.1021/ja902010p (b) Brun, M.; Tan, K.-T.; Nakata, E.; Hinner, M.; Johnsson, K. J Am Chem Soc 2009, 131, 5873. DOI: 10.1021/ja900149e

 

Avatar photo

goatfish

投稿者の記事一覧

専門は有機化学です。有機合成と運動さえできればもう何もいりません。

関連記事

  1. Dead Endを回避せよ!「全合成・極限からの一手」③(解答編…
  2. 有機合成化学協会誌2019年9月号:炭素–水素結合ケイ素化・脱フ…
  3. 金属キラル中心をもつ可視光レドックス不斉触媒
  4. 2007年度ノーベル化学賞を予想!(4)
  5. プロジェクトディレクトリについて
  6. カルシウムイオン濃度をモニターできるゲル状センサー
  7. 酸素を使った触媒的Dess–Martin型酸化
  8. YMC研究奨励金当選者の声

注目情報

ピックアップ記事

  1. 第47回「目指すは究極の“物質使い”」前田和彦 准教授
  2. ケムステSlackが開設5周年を迎えました!
  3. バートン トリフルオロメチル化 Burton Trifluoromethylation
  4. ガボール・ソモライ Gabor A. Somorjai
  5. カチオン重合 Cationic Polymerization
  6. メソポーラスシリカ(2)
  7. タクミナ「スムーズフローポンプQ」の無料モニターキャンペーン
  8. ダイエット食から未承認薬
  9. 次世代電池の開発と市場予測について調査結果を発表
  10. AIと融合するバイオテクノロジー|越境と共創がもたらす革新的シングルセル解析

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP