[スポンサーリンク]

化学者のつぶやき

リガンド指向性化学を用いたGABAA受容体の新規創薬探索法の開発

[スポンサーリンク]

γ-アミノ酪酸(GABA)は神経伝達物質として知られているアミノ酸です。同じ名前のチョコレート菓子が売れられているので、耳にしたことがある人が多いと思います。このGABAを認識するGABAA受容体はうつ病や統合失調症などの精神疾患に関係していることが知られているため、創薬ターゲットとして注目されています。しかしながらGABAA受容体に対する効率的な創薬探索法は限られていました[1]

最近、京都大学の清中准教授、浜地教授らは独自に開発したタンパク質の化学修飾法(LDAI化学)[2]及びBFQR(bimolecular fluorescence quenching and recovery)法を用いてGABAA受容体の蛍光センサー化を行い、効率的な創薬探索法を確立しました。そして開発した手法を用いて、今までとは全く異なる構造を有するGABAA受容体に対する創薬候補化合物を見出しました。

Discovery of allosteric modulators for GABAA receptors by ligand-directed chemistry

Yamaura, K.; Kiyonaka, S.; Numata, T.; Inoue, R.; Hamachi, I. Nat. Chem. Biol.2016. DOI: 10.1038/nchembio.2150

今回は本論文について紹介したいと思います。

なぜGABAA受容体に対する創薬探索が困難なのか?

GABAA受容体はたんぱく質5つから構成されるイオンチャネル型受容体です。現在報告されているGABAA受容体に存在する薬剤結合部位は、構成するタンパク質境界に存在しているため、詳細な構造情報を得ることが困難です。この構造的不明瞭さが効率的な創薬スクリーニング法の開発に大きな弊害を与えています。

GABAA受容体

GABAA受容体

 

BFQR法とは

では今回報告されたBFQR法とはどういうものでしょうか。BFQR法は蛍光性バイオセンサーを用いた創薬探索法で、原理は、

  1. 蛍光分子–受容体(F0)を用意する
  2. F0にリガンド分子結合消光剤(Gaba–Q)を作用させることでFRETがおこり、蛍光が消光した状態(F1)になる
  3. 標的の結合部位と相互作用する化合物を加えると、消光剤が追い出され蛍光が回復する(F2)
  4. 蛍光の回復の割合(F2/F1)が大きくなる化合物が標的の結合部位と強く相互作用していると評価する
BFQR法

BFQR法

 

近年このような蛍光性バイオセンサーを用いて蛍光の変化を観察することで創薬探索を行う方法が報告されつつあります[3]。スループット性が高く非常に強力な手法ですが、弱点があります。それは蛍光分子–受容体(F0)を構築するために、標的タンパク質の詳細な構造がわからなければならないことです。そのため構造が不明瞭であるGABAA受容体の蛍光性バイオセンサーの構築は困難を極めます。

ここで今回、筆者らは独自に開発した「リガンド指向型ラベル化法」を用いることでこの問題点を解決しました。リガンド指向型ラベル化法の詳細な説明は割愛させていただきますが、重要なことは目的タンパク質の詳細な構造がわからなくとも、薬剤結合部位と相互作用する化合物さえがあれば、薬剤結合部位をマスクすることなく蛍光分子を導入することができるということです。筆者らはこのリガンド指向型ラベル化法をもちいることで適切な位置に蛍光分子を導入し、GABAA受容体の蛍光性バイオセンサーの構築に成功しました。

新規創薬探索法の全体像

新規創薬探索法の全体像

 

新規化合物の発見

このように開発した蛍光性バイオセンサーを用いて、今回はベンゾジアゼピン結合部位と相互作用する化合物の探索を行っています。結果としては市販の化合物ライブラリーの1280化合物から薬剤結合部位と相互作用する4つの分子を見出しました。これらの化合物の中でILTGとflumazenilはベンゾジアゼピン結合部位と相互作用することが既に知られているものでしたが、PPTとTBBに関しては新規化合物でした。しかもこれら二つの化合物を詳細に調べると、驚くべきことにベンゾジアゼピン結合部位に結合していないことがわかりました!しかし別の方法で調べるとPPTとTBBはちゃんとGABAA受容体には作用していることは確認できています。

ヒット化合物

ヒット化合物

 

スクリーニング範囲が拡大!

それでは何故ベンゾジアゼピン結合部位と相互作用しないにもかかわらず消光したのでしょうか。詳細は論文を見ていただけたらと思いますが、PPTとTBBはベンゾジアゼピン結合部位とは異なる部分に作用し、その結果受容体の構造が変化することで消光剤と蛍光団とがFRETが起きない位置関係になることで消光しなくなったと結論付けています。

これは筆者たちも意外だったと思います。最初の目論見では競合的な結合のスクリーニングしかできないと予想していたところに、このような非競合的に結合する化合物を見つけ出すことができたのはラッキーだったのではないでしょうか。偶然にもBFQR法は競合的・非競合的に結合する化合物を一挙にスクリーニングできる方法だったのです。

 

おわりに

筆者らが論文中でも述べていますが、本手法のリミテーションとして”有能な”リガンド分子がなければセンサーを構築できないということです。また標的の薬剤結合部位近辺に求核性アミノ酸残基も必要です。しかしながら本手法は構造が不明瞭な他の受容体の新規薬剤探索にも応用できる可能性を秘めているという点で非常に興味深い方法論ではないかと思います。

今回見出した新たな化合物の行く末、そしてBFQR法の他のターゲットへの適用と今後の展開が非常に気になりますね。

 

参考文献

  1. 論文 Supplementary Table 2
  2. Fujishima, S. H.; Yasui, R.; Miki, T.; Ojida, A.; Hamachi, I. J. Am. Chem. Soc. 2012, 134, 3961. DOI: 10.1021/ja2108855
  3. (a) Simard, J. R.; Getlik, M.; Grütter, C.; Pawar, V.; Wulfert, S.; Rabiller, M.; Rauh, D. J. Am. Chem. Soc. 2009, 131, 13286. DOI: 10.1021/ja902010p (b) Brun, M.; Tan, K.-T.; Nakata, E.; Hinner, M.; Johnsson, K. J Am Chem Soc 2009, 131, 5873. DOI: 10.1021/ja900149e

 

Avatar photo

goatfish

投稿者の記事一覧

専門は有機化学です。有機合成と運動さえできればもう何もいりません。

関連記事

  1. 「神経栄養/保護作用を有するセスキテルペン類の全合成研究」ースク…
  2. ChemDrawの使い方【作図編③:表】
  3. リンダウ会議に行ってきた②
  4. 研究者版マイナンバー「ORCID」を取得しよう!
  5. 沖縄科学技術大学院大学(OIST) 教員公募
  6. 若手研究者vsノーベル賞受賞者 【基礎編】
  7. ナノの世界の交通事情~セルラーゼも渋滞する~
  8. 2012年ノーベル化学賞は誰の手に?

注目情報

ピックアップ記事

  1. 当量と容器サイズでヒドロアミノアルキル化反応を制御する
  2. 合成化学者十訓
  3. 抗体ペアが抗原分子上に反応場をつくり出す―2つの抗体エピトープを利用したテンプレート反応の開発―
  4. 第101回―「高分子ナノ構造の精密合成」Rachel O’Reilly教授
  5. 「脱芳香族的二重官能基修飾化反応の研究」ーイリノイ大学David Sarlah研より
  6. 細胞内で酵素のようにヒストンを修飾する化学触媒の開発
  7. 海外機関に訪問し、英語講演にチャレンジ!~① 基本を学ぼう ~
  8. 2010年ノーベル化学賞予想―海外版
  9. 研究者のためのCG作成術④(レンダリング編)
  10. 5社とも増収 経常利益は過去最高

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2016年9月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP