[スポンサーリンク]

化学者のつぶやき

計算化学を用いたスマートな天然物合成

[スポンサーリンク]

以前の報告より大幅に短工程化されたパスパリンAの全合成、及びエミインドールPBの初の全合成が報告された。DFT計算を用いることで、実験を行わずに中間体の最適構造を決定した。

計算化学を利用した反応の実現可能性の評価及び天然物への応用

逆合成解析は、化合物の合成を計画する上で最も利用されている理論的アプローチである。しかし、合成を最も単純化できる有力な逆合成の結合切断には、先行文献が不十分な場合が多く、実際に実験を試行せずにその実現可能性を評価することは難しい。現代のコンピューター計算は、この逆合成解析における強力な手法を生み出した。すなわち、効率的な結合切断を識別するアルゴリズムの開発[1]と、量子化学計算による挑戦的かつ前例のない合成計画の実現可能性の予測である。

一方、インドールジテルペノイドは、長く合成研究の標的となってきた天然物群である。パスパリンA (1)は、連続4級炭素に隣接したインドール縮環シクロペンタンを含む六環式骨格をもつ。これに関連する天然物は、哺乳類の乳がんに対する抗増殖・抗転移活性を有する。現在までに報告されている1の全合成では、C環に相当するシクロペンタノン部位に対するインドール合成反応を用いる戦略がとられており、多工程を余儀なくされていた(1A)[2,3]。一方、エミインドールPB (2)はいまだ全合成例はない。

今回、イエール大学のNewhouse准教授らは、生合成(1C)を模倣した合成戦略に従い、インドールの求核性を利用してC環を構築することで1の短工程な全合成を達成した。さらに同一中間体からメチル転位を進行させることで2の初の全合成及び構造決定に成功した(1B)C環の環化前駆体の最適構造を、密度汎関数(DFT)計算を用いて決定することで、時間とコストのかかる実験による最適化の工程を削減することに成功した。

図1. (A) Paspaline Aの全合成の報告例 (B) 今回の合成戦略 (C) 生合成

 

Total Synthesis of Paspaline A and Emindole PB Enabled by Computational Augmentation of a Transform-Guided Retrosynthetic Strategy

Kim, D. E.; Zweig, J. E.; Newhouse, T. R. J. Am. Chem. Soc.2019, ASAP. DOI: 10.1021/jacs.8b13127

論文著者の紹介

研究者:Timothy R. Newhouse

研究者の経歴:
2001-2005 B.A., Colby College, ME, USA (Prof. Dasan M. Thamattoor)
2006-2010 Ph.D, The Scripps Research Institute, CA, USA (Prof. Phil S. Baran and Prof. Donna G. Blackmond)
2010-2013 Posdoc,Harvard University, MA, USA (Prof. E. J. Corey)
2013-2018 Assistant Prof. at Yale University, CT, USA
2018- Associate Prof. at Yale University

研究内容:計算化学を用いた天然物合成、遷移金属触媒を用いた反応開発及び天然物合成

論文の概要

 Newhouse准教授らは、1の合成において、インドールを先にジテルペン骨格に連結させ、インドールのもつ求核性を利用するC環構築を計画した。そこで、遠隔位に位置するF環前駆体の構造が異なる3つの化合物の三級カルボカチオン中間体Z(a)Z(c)に対してDFT計算を行うことで反応性を比較し、より環化が進行しやすい基質を見積もった(2A)。具体的には、三級カルボカチオン中間体からは環化とメチル転位が進行しうるが、これらが進行する際のエネルギー障壁をそれぞれ計算した。その結果、F環に二環式ケタール構造を有するZ(c)を用いた場合、環化とメチル転位のエネルギー障壁の差が最大(–4.5 kcal/mol)であることがわかり、この構造を経由して1を合成することとした。

 Wieland-Miescher ケトン誘導体より5工程で合成可能な環化前駆体であるアルコール3に対し、AlCl3を作用させることで、C環が形成した環化体4とメチル基が転位したケタール5を得た(4:5= 1:3)(2B)4は還元条件で、パスパリンA (1)へと誘導できる(9工程)。一方、5からは4工程でオレフィンの異性化とF環の形成を行い、最後に窒素原子をtertプレニル化することで、エミインドールPB (2)を得た(14工程)

図2. (A)DFT計算による評価 (B)Paspaline A及びEmindole PBの合成

以上、以前までの3分の1の工程数でのパスパリンA及びエミインドールPBの全合成が達成された。DFT計算による基質の最適化をすることで、実験におけるトライ&エラーを回避している。この計算アプローチの能力や限界は未知ではあるものの、今後のさらなる研究の進展により本手法の確からしさが明らかになっていくことに期待したい。

参考文献

  1. Corey, E. J.; Wipke, W. T. Science 1969, 166, 178–192.DOI: 1126/science.166.3902.178
  2. (a) Smith, A. B.; Mewshaw, R. J. Am. Chem. Soc. 1985, 107, 1769–1771. DOI: 10.1021/ja00292a058 (b) Smith, A. B.; Leenay, T. L. J. Am. Chem. Soc. 1989, 111, 5761–5768. DOI: 10.1021/ja00197a039
  3. Sharpe, R. J.; Johnson, J. S. J. Am. Chem. Soc. 2015, 137, 4968–4971. DOI: 10.1021/jacs.5b02631
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 有機アジド(1):歴史と基本的な性質
  2. 文献管理のキラーアプリとなるか? 「ReadCube」
  3. Carl Boschの人生 その3
  4. アメリカで Ph.D. を取る –エッセイを書くの巻– (前編)…
  5. シグマ アルドリッチ構造式カタログの機能がアップグレードしたらし…
  6. アジサイの青色色素錯体をガク片の中に直接検出!
  7. で、その研究はなんの役に立つの?
  8. 湾曲したパラフェニレンで繋がれたジラジカルの挙動  〜湾曲効果に…

注目情報

ピックアップ記事

  1. HKUST-1: ベンゼンが囲むケージ状構造体
  2. カーボンナノリング合成に成功!
  3. スペクトルから化合物を検索「KnowItAll」
  4. お”カネ”持ちな会社たち-1
  5. 固体型色素増感太陽電池搭載マウスを買ってみました
  6. カクテルにインスパイアされた男性向け避妊法が開発される
  7. 新しい糖尿病治療薬認可へ~人体機能高めるタイプから吸入式まで
  8. ノーベル化学賞まとめ
  9. ハワイの海洋天然物(+)-Waixenicin Aの不斉全合成
  10. マテリアルズ・インフォマティクス適用のためのテーマ検討の進め方とは?

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2019年1月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

最新記事

【太陽ホールディングス】新卒採用情報(2026卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

産総研の研究室見学に行ってきました!~採用情報や研究の現場について~

こんにちは,熊葛です.先日,産総研 生命工学領域の開催する研究室見学に行ってきました!本記事では,産…

第47回ケムステVシンポ「マイクロフローケミストリー」を開催します!

第47回ケムステVシンポジウムの開催告知をさせて頂きます!第47回ケムステVシンポジウムは、…

【味の素ファインテクノ】新卒採用情報(2026卒)

当社は入社時研修を経て、先輩指導のもと、実践(※)の場でご活躍いただきます。「いきなり実践で…

MI-6 / エスマット共催ウェビナー:デジタルで製造業の生産性を劇的改善する方法

開催日:2024年11月6日 申込みはこちら開催概要デジタル時代において、イノベーション…

窒素原子の導入がスイッチング分子の新たな機能を切り拓く!?

第630回のスポットライトリサーチは、大阪公立大学大学院工学研究科(小畠研究室)博士後期課程3年の …

エントロピーの悩みどころを整理してみる その1

Tshozoです。 エントロピーが煮詰まってきたので頭の中を吐き出し整理してみます。なんでこうも…

AJICAP-M: 位置選択的な抗体薬物複合体製造を可能にするトレースレス親和性ペプチド修飾技術

概要味の素株式会社の松田豊 (現 Exelixis 社)、藤井友博らは、親和性ペ…

材料開発におけるインフォマティクス 〜DBによる材料探索、スペクトル・画像活用〜

開催日:10/30 詳細はこちら開催概要研究開発領域におけるデジタル・トランスフォーメー…

ロベルト・カー Roberto Car

ロベルト・カー (Roberto Car 1947年1月3日 トリエステ生まれ) はイタリアの化学者…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP