[スポンサーリンク]

化学者のつぶやき

この窒素、まるでホウ素~ルイス酸性窒素化合物~

[スポンサーリンク]

固まりかけた知識は掃除してみても、いいかもしれません。

15族化合物は求核性?

13族化合物はルイス酸性・求電子性である、という安易な分類はもうできない時代に突入しています。[1]例えば、ごく最近、Bath大学のHillらは、簡便な方法で求核性ホウ素マグネシウム化合物を合成する方法を報告しています。[2] 一方で、15族化合物に関してはどうでしょう?
一般的に15族化合物はルイス塩基性・求核性として機能すると理解されていますが、リン化合物の中にはルイス酸として働くもの知られており、最近ではその特徴を活かして触媒として応用する例も報告されています。[3] ところが、窒素を明らかなルイス酸中心として機能する化合物は例がなく、特殊なケースとしては、以前報告したナイトレンとイソニトリルの付加反応によってカルボジアミドが生成する一例が知られています。

ニトレニウム化合物

イスラエル工科大学のGandelmanらは、二配位カチオン性窒素化合物 ニトレニウムが、遷移金属の配位子として利用できることを以前報告しています。[4] 遷移金属錯体の配位子として幅広く利用されているカルベンと等電子構造を持つニトレニウムですが、正電荷を帯びているため、求核性は高くありません。しかし、ピンサー型に修飾することで、その窒素中心がRhやRuなどの金属へ配位可能であることが立証されています。

で、上述の通り、の窒素周りはカルベン炭素と類似の電子環境であることから、中心窒素には形式的に電子対と空のp軌道が存在します。

平面三配位かつ空のp軌道を持つ電子構造は、そう、三配位のホウ素化合物と同じですね。じゃあ、その空軌道ってルイス酸性を示すんじゃないの?ってことで、今回、様々なルイス塩基及び求核剤と反応できる窒素化合物に関する論文がJACS誌に報告されていたので、紹介したいと思います。

ルイス塩基性窒素中心

Alla Pogoreltsev, Yuri Tulchinsky, Natalia Fridman, and Mark Gandelman, J. Am. Chem. Soc. 2017, 139, 4062, DOI: 10.1021/jacs.6b12360

著者らはまず、三つのニトレニウム種10を下記の方法で合成しています。


化合物に対してKPR2(R = Ph or tBu)を反応させたところ、環拡大した12が得られています。中間体11が発生したのちに、リン原子上の電子対が五員環内N-N結合の開裂に寄与しているのでは、と考えた著者らは、次に、その電子対を保護したKP(=O)Ph2もしくはKPPh2・BH3を用いてとの反応を検討しています。


その結果、の中心窒素原子にリンが結合した化合物1314をそれぞれの反応から単離することに成功しました。ニトレニウムを用いても同様の結果が得られています。

(12,13,14の分子構造。図は原著論文より)

 

一方で、10とKPR2との反応では、リン上の電子対を保護していないにも関わらず、上述の中間体11に対応する化合物15を得ることができています。おそらく、10がナフタレン部位で固定された六員環構造を有しているため、環拡大反応の進行を制御できたのではと考えられます。

また、中性のホスフィンPR3 (R = Bu or Me)との反応では、PR310の中心窒素に配位したルイス付加体16が生成することがわかりました。さらに、KP(=O)Ph2、KPPh2・BH3、そしてRLi(R = Bu or Ph)との反応からも、中心窒素が求核攻撃された反応生成物が得られています。

最後に著者らは、ルイス付加体16において、中心窒素上でリン配位子が置換可能であることも示しています。

うまく分子をデザインすれば、ホウ素無しのFLPなんてのも、そのうちできそうな気がしてきますね。
基礎化学者たるもの、元素の持つ基本的な性質を深く理解する過程で、その知識に束縛されてしまう罠に陥ってはいけません。頭の柔軟体操が大切であることを再認識させてくれる論文でした。

参考文献

  1. Douglas W. Stephan, Angew. Chem. Int. Ed. 2017, doi:10.1002/anie.201700721
  2. Anne-Frederique Pecharman, Annie L. Colebatch, Michael S. Hill, Claire L. McMullin, Mary F. Mahon, Catherine Weetman, Nat. Commun, 2017, doi:10.1038/ncomms15022
  3. Christopher B. Caputo, Lindsay J. Hounjet, Roman Dobrovetsky, Douglas W. Stephan, Science, 2013, 341, 1374, doi: 10.1126/science.1241764
  4. Yuri Tulchinsky, Mark A. Iron, Mark Botoshansky, Mark Gandelman, Nat. Chem. 2011, 3, 525, doi: 10.1038/NCHEM.1068

関連書籍

関連リンク

The following two tabs change content below.
StarryNight

StarryNight

関連記事

  1. ベンゼン環記法マニアックス
  2. アメリカ大学院留学:実験TAと成績評価の裏側
  3. Goodenough教授の素晴らしすぎる研究人生
  4. 2016年ケムステ人気記事ランキング
  5. カーボンナノベルト合成初成功の舞台裏 (1)
  6. 力学的エネルギーで”逆”クリック!
  7. 研究者・技術系ベンチャー向けアクセラレーションプログラムR…
  8. ジボリルメタンに一挙に二つの求電子剤をくっつける

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機反応を俯瞰する ー挿入的 [1,2] 転位
  2. 米ファイザーの第3・四半期決算は52%減益
  3. 生物指向型合成 Biology-Oriented Synthesis
  4. 研究活動の御用達!PDF加工のためのクラウドサービス
  5. フィッシャー・スペイア エステル合成 Fischer-Speier Esterification
  6. 自動車排ガス浄化触媒って何?
  7. 有機合成化学 vs. 合成生物学 ― 将来の「薬作り」を席巻するのはどっち?
  8. 思わぬ伏兵・豚インフルエンザ
  9. 水が促進するエポキシド開環カスケード
  10. 水素化ホウ素亜鉛 Zinc Bodohydride

関連商品

注目情報

注目情報

最新記事

アゾベンゼンは光る!~新たな発光材料として期待~

第225回のスポットライトリサーチは、関西学院大学 増尾研究室 助教の山内光陽(やまうち みつあき)…

ハラスメントから自分を守るために。他人を守るために【アメリカで Ph.D. を取る –オリエンテーションの巻 その 2-】

アカデミックハラスメントやセクシャルハラスメントは、学業やキャリアの成功に悪影響を与えます。 どんな…

2つのグリニャールからスルホンジイミンを作る

グリニャール試薬とスルフィニルアミンを用いたスルホンジイミン合成が達成された。爆発性物質、臭気性物質…

赤外光で分子の結合を切る!

第224回のスポットライトリサーチは、東京大学生産技術研究所芦原研究室の森近一貴(もりちか いっき)…

トム・マイモニ Thomas J. Maimone

トーマス・J・マイモニ(Thomas J. Maimone、1982年2月13日–)は米国の有機化学…

キャリアデザイン研究講演会~化学研究と企業と君との出会いをさがそう!~

詳細はこちら:https://csjkinki.com/career/日時…

Chem-Station Twitter

PAGE TOP