[スポンサーリンク]

化学者のつぶやき

この窒素、まるでホウ素~ルイス酸性窒素化合物~

[スポンサーリンク]

固まりかけた知識は掃除してみても、いいかもしれません。

15族化合物は求核性?

13族化合物はルイス酸性・求電子性である、という安易な分類はもうできない時代に突入しています。[1]例えば、ごく最近、Bath大学のHillらは、簡便な方法で求核性ホウ素マグネシウム化合物を合成する方法を報告しています。[2] 一方で、15族化合物に関してはどうでしょう?
一般的に15族化合物はルイス塩基性・求核性として機能すると理解されていますが、リン化合物の中にはルイス酸として働くもの知られており、最近ではその特徴を活かして触媒として応用する例も報告されています。[3] ところが、窒素を明らかなルイス酸中心として機能する化合物は例がなく、特殊なケースとしては、以前報告したナイトレンとイソニトリルの付加反応によってカルボジアミドが生成する一例が知られています。

ニトレニウム化合物

イスラエル工科大学のGandelmanらは、二配位カチオン性窒素化合物 ニトレニウムが、遷移金属の配位子として利用できることを以前報告しています。[4] 遷移金属錯体の配位子として幅広く利用されているカルベンと等電子構造を持つニトレニウムですが、正電荷を帯びているため、求核性は高くありません。しかし、ピンサー型に修飾することで、その窒素中心がRhやRuなどの金属へ配位可能であることが立証されています。

で、上述の通り、の窒素周りはカルベン炭素と類似の電子環境であることから、中心窒素には形式的に電子対と空のp軌道が存在します。

平面三配位かつ空のp軌道を持つ電子構造は、そう、三配位のホウ素化合物と同じですね。じゃあ、その空軌道ってルイス酸性を示すんじゃないの?ってことで、今回、様々なルイス塩基及び求核剤と反応できる窒素化合物に関する論文がJACS誌に報告されていたので、紹介したいと思います。

ルイス塩基性窒素中心

Alla Pogoreltsev, Yuri Tulchinsky, Natalia Fridman, and Mark Gandelman, J. Am. Chem. Soc. 2017, 139, 4062, DOI: 10.1021/jacs.6b12360

著者らはまず、三つのニトレニウム種10を下記の方法で合成しています。


化合物に対してKPR2(R = Ph or tBu)を反応させたところ、環拡大した12が得られています。中間体11が発生したのちに、リン原子上の電子対が五員環内N-N結合の開裂に寄与しているのでは、と考えた著者らは、次に、その電子対を保護したKP(=O)Ph2もしくはKPPh2・BH3を用いてとの反応を検討しています。


その結果、の中心窒素原子にリンが結合した化合物1314をそれぞれの反応から単離することに成功しました。ニトレニウムを用いても同様の結果が得られています。

(12,13,14の分子構造。図は原著論文より)

 

一方で、10とKPR2との反応では、リン上の電子対を保護していないにも関わらず、上述の中間体11に対応する化合物15を得ることができています。おそらく、10がナフタレン部位で固定された六員環構造を有しているため、環拡大反応の進行を制御できたのではと考えられます。

また、中性のホスフィンPR3 (R = Bu or Me)との反応では、PR310の中心窒素に配位したルイス付加体16が生成することがわかりました。さらに、KP(=O)Ph2、KPPh2・BH3、そしてRLi(R = Bu or Ph)との反応からも、中心窒素が求核攻撃された反応生成物が得られています。

最後に著者らは、ルイス付加体16において、中心窒素上でリン配位子が置換可能であることも示しています。

うまく分子をデザインすれば、ホウ素無しのFLPなんてのも、そのうちできそうな気がしてきますね。
基礎化学者たるもの、元素の持つ基本的な性質を深く理解する過程で、その知識に束縛されてしまう罠に陥ってはいけません。頭の柔軟体操が大切であることを再認識させてくれる論文でした。

参考文献

  1. Douglas W. Stephan, Angew. Chem. Int. Ed. 2017, doi:10.1002/anie.201700721
  2. Anne-Frederique Pecharman, Annie L. Colebatch, Michael S. Hill, Claire L. McMullin, Mary F. Mahon, Catherine Weetman, Nat. Commun, 2017, doi:10.1038/ncomms15022
  3. Christopher B. Caputo, Lindsay J. Hounjet, Roman Dobrovetsky, Douglas W. Stephan, Science, 2013, 341, 1374, doi: 10.1126/science.1241764
  4. Yuri Tulchinsky, Mark A. Iron, Mark Botoshansky, Mark Gandelman, Nat. Chem. 2011, 3, 525, doi: 10.1038/NCHEM.1068

関連書籍

関連リンク

The following two tabs change content below.
StarryNight

StarryNight

関連記事

  1. あなたの合成ルートは理想的?
  2. 近年の量子ドットディスプレイ業界の動向
  3. 化学者ネットワーク
  4. 嫌気性コリン代謝阻害剤の開発
  5. 化学系人材の、より良い将来選択のために
  6. 学生・ポスドクの方、ちょっとアメリカ旅行しませんか?:SciFi…
  7. 2013年ノーベル化学賞は誰の手に?トムソンロイター版
  8. 2010年ノーベル化学賞ーお祭り編

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 多彩な蛍光を発する単一分子有機化合物をつくる
  2. 大麻から作られる医薬品がアメリカでオーファンドラッグとして認証へ
  3. バリー・トロスト Barry M. Trost
  4. 硤合 憲三 Kenso Soai
  5. 原子移動ラジカル重合 Atom Transfer Radical Polymerization
  6. 上村 大輔 Daisuke Uemura
  7. Gilbert Stork最後の?論文
  8. 構造式の効果
  9. 化学的に覚醒剤を隠す薬物を摘発
  10. 世界の化学企業いくつ知っていますか?

関連商品

注目情報

注目情報

最新記事

勤務地にこだわり理想も叶える!転職に成功したエンジニアの話

総合職であれば、本社以外の勤務や転勤を職務の一貫として、身近なものとして考えられる方は多いのではない…

決算短信~日本触媒と三洋化成の合併に関連して~

投資家でなければ関係ないと思われがちな決算短信ですが、実は企業のいろいろな情報が正直に書いてある書類…

複雑にインターロックした自己集合体の形成機構の解明

第199回のスポットライトリサーチは、東京大学総合文化研究科(平岡研究室)博士課程・立石友紀さんにお…

小型質量分析装置expression® CMSを試してみた

学生が増えすぎて(うれしい悲鳴ですが)、機器を購入する余裕などこれっぽっちもない代表です。さ…

有機合成化学協会誌2019年6月号:不斉ヘテロDiels-Alder反応・合金ナノ粒子触媒・グラフェンナノリボン・触媒的光延反応・フェイズ・バニシング

有機合成化学協会が発行する有機合成化学協会誌、2019年6月号がオンライン公開されました。梅…

東大キャリア教室で1年生に伝えている大切なこと: 変化を生きる13の流儀

概要不確実な時代を生き抜くキャリアを創るには? 各界で活躍する東大OB・OGが、学生生活や就…

Chem-Station Twitter

PAGE TOP