[スポンサーリンク]

化学者のつぶやき

この窒素、まるでホウ素~ルイス酸性窒素化合物~

[スポンサーリンク]

固まりかけた知識は掃除してみても、いいかもしれません。

15族化合物は求核性?

13族化合物はルイス酸性・求電子性である、という安易な分類はもうできない時代に突入しています。[1]例えば、ごく最近、Bath大学のHillらは、簡便な方法で求核性ホウ素マグネシウム化合物を合成する方法を報告しています。[2] 一方で、15族化合物に関してはどうでしょう?
一般的に15族化合物はルイス塩基性・求核性として機能すると理解されていますが、リン化合物の中にはルイス酸として働くもの知られており、最近ではその特徴を活かして触媒として応用する例も報告されています。[3] ところが、窒素を明らかなルイス酸中心として機能する化合物は例がなく、特殊なケースとしては、以前報告したナイトレンとイソニトリルの付加反応によってカルボジアミドが生成する一例が知られています。

ニトレニウム化合物

イスラエル工科大学のGandelmanらは、二配位カチオン性窒素化合物 ニトレニウムが、遷移金属の配位子として利用できることを以前報告しています。[4] 遷移金属錯体の配位子として幅広く利用されているカルベンと等電子構造を持つニトレニウムですが、正電荷を帯びているため、求核性は高くありません。しかし、ピンサー型に修飾することで、その窒素中心がRhやRuなどの金属へ配位可能であることが立証されています。

で、上述の通り、の窒素周りはカルベン炭素と類似の電子環境であることから、中心窒素には形式的に電子対と空のp軌道が存在します。

平面三配位かつ空のp軌道を持つ電子構造は、そう、三配位のホウ素化合物と同じですね。じゃあ、その空軌道ってルイス酸性を示すんじゃないの?ってことで、今回、様々なルイス塩基及び求核剤と反応できる窒素化合物に関する論文がJACS誌に報告されていたので、紹介したいと思います。

ルイス塩基性窒素中心

Alla Pogoreltsev, Yuri Tulchinsky, Natalia Fridman, and Mark Gandelman, J. Am. Chem. Soc. 2017, 139, 4062, DOI: 10.1021/jacs.6b12360

著者らはまず、三つのニトレニウム種10を下記の方法で合成しています。


化合物に対してKPR2(R = Ph or tBu)を反応させたところ、環拡大した12が得られています。中間体11が発生したのちに、リン原子上の電子対が五員環内N-N結合の開裂に寄与しているのでは、と考えた著者らは、次に、その電子対を保護したKP(=O)Ph2もしくはKPPh2・BH3を用いてとの反応を検討しています。


その結果、の中心窒素原子にリンが結合した化合物1314をそれぞれの反応から単離することに成功しました。ニトレニウムを用いても同様の結果が得られています。

(12,13,14の分子構造。図は原著論文より)

 

一方で、10とKPR2との反応では、リン上の電子対を保護していないにも関わらず、上述の中間体11に対応する化合物15を得ることができています。おそらく、10がナフタレン部位で固定された六員環構造を有しているため、環拡大反応の進行を制御できたのではと考えられます。

また、中性のホスフィンPR3 (R = Bu or Me)との反応では、PR310の中心窒素に配位したルイス付加体16が生成することがわかりました。さらに、KP(=O)Ph2、KPPh2・BH3、そしてRLi(R = Bu or Ph)との反応からも、中心窒素が求核攻撃された反応生成物が得られています。

最後に著者らは、ルイス付加体16において、中心窒素上でリン配位子が置換可能であることも示しています。

うまく分子をデザインすれば、ホウ素無しのFLPなんてのも、そのうちできそうな気がしてきますね。
基礎化学者たるもの、元素の持つ基本的な性質を深く理解する過程で、その知識に束縛されてしまう罠に陥ってはいけません。頭の柔軟体操が大切であることを再認識させてくれる論文でした。

参考文献

  1. Douglas W. Stephan, Angew. Chem. Int. Ed. 2017, doi:10.1002/anie.201700721
  2. Anne-Frederique Pecharman, Annie L. Colebatch, Michael S. Hill, Claire L. McMullin, Mary F. Mahon, Catherine Weetman, Nat. Commun, 2017, doi:10.1038/ncomms15022
  3. Christopher B. Caputo, Lindsay J. Hounjet, Roman Dobrovetsky, Douglas W. Stephan, Science, 2013, 341, 1374, doi: 10.1126/science.1241764
  4. Yuri Tulchinsky, Mark A. Iron, Mark Botoshansky, Mark Gandelman, Nat. Chem. 2011, 3, 525, doi: 10.1038/NCHEM.1068

関連書籍

関連リンク

関連記事

  1. 使っては・合成してはイケナイ化合物 |第3回「有機合成実験テクニ…
  2. シリリウムカルボラン触媒を用いる脱フッ素水素化
  3. 二酸化炭素をはきだして♪
  4. 世界初の有機蓄光
  5. 触媒的不斉交差ピナコールカップリングの開発
  6. アルデヒドを分液操作で取り除く!
  7. なぜ電子が非局在化すると安定化するの?【化学者だって数学するっつ…
  8. アルケンとニトリルを相互交換する

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 英語で授業/発表するときのいろは【アメリカで Ph.D. をとる: TA 奮闘記 その 1】
  2. 抗がん剤などの原料の新製造法
  3. ファイトスルフォカイン (phytosulfokine)
  4. 有機合成から無機固体材料設計・固体物理へ: 分子でないものの分子科学を求めて –ジャン ロッシェ材料研究所より
  5. 前人未踏の超分子構造体を「数学のチカラ」で見つけ出す
  6. 光刺激に応答して形状を変化させる高分子の合成
  7. 銀を使ってリンをいれる
  8. 個性あふれるTOC大集合!
  9. Reaction and Synthesis: In the Organic Chemistry Laboratory
  10. 酸素ボンベ爆発、男性死亡 

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

赤キャベツから新しい青色天然着色料を発見 -青色1号に代わる美しく安定なアントシアニン色素-

青の食品着色料として広く使われる化学合成の「青色1号」とほぼ同じ色で、長期保存時の安定性に優れた天然…

砂塚 敏明 Toshiaki Sunazuka

砂塚 敏明 (すなづか としあき)は、日本の有機化学者である。学校法人北里研究所 理事、北里大学大村…

【ケムステSlackに訊いてみた】有機合成を学ぶオススメ参考書を教えて!

日本初のオープン化学コミュニティ・ケムステSlackを立ち上げてもうすぐ2年が経ちます。かな…

第三回ケムステVプレミアレクチャー「夢のある天然物創薬」を開催します!

そろそろケムステVシンポも開始しますが、その前にもう一度Vプレレクのお知らせです。3月末に第…

第8回慶應有機化学若手シンポジウム

ご案内有機合成・反応化学、天然物化学・ケミカルバイオロジー、生物 有機化学・医化学、有機材料化学…

第141回―「天然と人工の高分子を融合させる」Sébastien Perrier教授

第141回の海外化学者インタビューはセバスチャン・ペリエ教授です。シドニー大学化学科(訳注:現在はワ…

合格体験記:知的財産管理技能検定~berg編~

私(berg)が2019(令和元)年11月17日(日)に受験した3級(第34回)の記録です。現状とは…

ゼロから学ぶ機械学習【化学徒の機械学習】

hodaです。機械学習に興味があります。突然ですが読者の皆さんは第13回ケムステVシンポジウム「…

Chem-Station Twitter

PAGE TOP