[スポンサーリンク]

化学者のつぶやき

この窒素、まるでホウ素~ルイス酸性窒素化合物~

[スポンサーリンク]

固まりかけた知識は掃除してみても、いいかもしれません。

15族化合物は求核性?

13族化合物はルイス酸性・求電子性である、という安易な分類はもうできない時代に突入しています。[1]例えば、ごく最近、Bath大学のHillらは、簡便な方法で求核性ホウ素マグネシウム化合物を合成する方法を報告しています。[2] 一方で、15族化合物に関してはどうでしょう?
一般的に15族化合物はルイス塩基性・求核性として機能すると理解されていますが、リン化合物の中にはルイス酸として働くもの知られており、最近ではその特徴を活かして触媒として応用する例も報告されています。[3] ところが、窒素を明らかなルイス酸中心として機能する化合物は例がなく、特殊なケースとしては、以前報告したナイトレンとイソニトリルの付加反応によってカルボジアミドが生成する一例が知られています。

ニトレニウム化合物

イスラエル工科大学のGandelmanらは、二配位カチオン性窒素化合物 ニトレニウムが、遷移金属の配位子として利用できることを以前報告しています。[4] 遷移金属錯体の配位子として幅広く利用されているカルベンと等電子構造を持つニトレニウムですが、正電荷を帯びているため、求核性は高くありません。しかし、ピンサー型に修飾することで、その窒素中心がRhやRuなどの金属へ配位可能であることが立証されています。

で、上述の通り、の窒素周りはカルベン炭素と類似の電子環境であることから、中心窒素には形式的に電子対と空のp軌道が存在します。

平面三配位かつ空のp軌道を持つ電子構造は、そう、三配位のホウ素化合物と同じですね。じゃあ、その空軌道ってルイス酸性を示すんじゃないの?ってことで、今回、様々なルイス塩基及び求核剤と反応できる窒素化合物に関する論文がJACS誌に報告されていたので、紹介したいと思います。

ルイス塩基性窒素中心

Alla Pogoreltsev, Yuri Tulchinsky, Natalia Fridman, and Mark Gandelman, J. Am. Chem. Soc. 2017, 139, 4062, DOI: 10.1021/jacs.6b12360

著者らはまず、三つのニトレニウム種10を下記の方法で合成しています。


化合物に対してKPR2(R = Ph or tBu)を反応させたところ、環拡大した12が得られています。中間体11が発生したのちに、リン原子上の電子対が五員環内N-N結合の開裂に寄与しているのでは、と考えた著者らは、次に、その電子対を保護したKP(=O)Ph2もしくはKPPh2・BH3を用いてとの反応を検討しています。


その結果、の中心窒素原子にリンが結合した化合物1314をそれぞれの反応から単離することに成功しました。ニトレニウムを用いても同様の結果が得られています。

(12,13,14の分子構造。図は原著論文より)

 

一方で、10とKPR2との反応では、リン上の電子対を保護していないにも関わらず、上述の中間体11に対応する化合物15を得ることができています。おそらく、10がナフタレン部位で固定された六員環構造を有しているため、環拡大反応の進行を制御できたのではと考えられます。

また、中性のホスフィンPR3 (R = Bu or Me)との反応では、PR310の中心窒素に配位したルイス付加体16が生成することがわかりました。さらに、KP(=O)Ph2、KPPh2・BH3、そしてRLi(R = Bu or Ph)との反応からも、中心窒素が求核攻撃された反応生成物が得られています。

最後に著者らは、ルイス付加体16において、中心窒素上でリン配位子が置換可能であることも示しています。

うまく分子をデザインすれば、ホウ素無しのFLPなんてのも、そのうちできそうな気がしてきますね。
基礎化学者たるもの、元素の持つ基本的な性質を深く理解する過程で、その知識に束縛されてしまう罠に陥ってはいけません。頭の柔軟体操が大切であることを再認識させてくれる論文でした。

参考文献

  1. Douglas W. Stephan, Angew. Chem. Int. Ed. 2017, doi:10.1002/anie.201700721
  2. Anne-Frederique Pecharman, Annie L. Colebatch, Michael S. Hill, Claire L. McMullin, Mary F. Mahon, Catherine Weetman, Nat. Commun, 2017, doi:10.1038/ncomms15022
  3. Christopher B. Caputo, Lindsay J. Hounjet, Roman Dobrovetsky, Douglas W. Stephan, Science, 2013, 341, 1374, doi: 10.1126/science.1241764
  4. Yuri Tulchinsky, Mark A. Iron, Mark Botoshansky, Mark Gandelman, Nat. Chem. 2011, 3, 525, doi: 10.1038/NCHEM.1068

関連書籍

関連リンク

The following two tabs change content below.
StarryNight

StarryNight

関連記事

  1. 人工DNAを複製可能な生物ができた!
  2. 実験する時の服装(企業研究所)
  3. 18万匹のトコジラミ大行進 ~誘因フェロモンを求めて①~
  4. キラル超原子価ヨウ素試薬を用いる不斉酸化
  5. ReadCubeを使い倒す(1)~論文閲覧プロセスを全て完結させ…
  6. メーカーで反応性が違う?パラジウムカーボンの反応活性
  7. 第4回慶應有機化学若手シンポジウム
  8. 小さなケイ素酸化物を得る方法

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. コンビナトリアル化学 Combinatorial Chemistry
  2. アンドレイ・ユーディン Andrei K. Yudin
  3. ピンポン玉で分子模型
  4. アニオン重合 Anionic Polymerization
  5. 第97回日本化学会春季年会 付設展示会ケムステキャンペーン Part II
  6. ゾーシー・マーベット転位 Saucy-Marbet Rearrangement
  7. 相間移動触媒 Phase-Transfer Catalyst (PTC)
  8. 化学でカードバトル!『Elementeo』
  9. 【書籍】天然物合成で活躍した反応:ケムステ特典も!
  10. 日本薬学会第125年会

関連商品

注目情報

注目情報

最新記事

年収で内定受諾を決定する際のポイントとは

転職活動の終盤で複数の企業から内定を獲得した際、「年収が決め手となって内定を受諾…

安定なケトンのケイ素類縁体“シラノン”の合成 ケイ素—酸素2重結合の構造と性質

第214回のスポットライトリサーチは、東北大学大学院理学研究科化学専攻(岩本研究室)・小林 良さんに…

99.7%の精度で偽造ウイスキーを見抜ける「人工舌」が開発される

 まるで人間の舌のように偽造ウイスキーを見抜くことができる小型のセンサーが開発されました。このセンサ…

天然のナノチューブ「微小管」の中にタンパク質を入れると何が起こる?

第213回のスポットライトリサーチは、鳥取大学大学院 工学研究科・稲葉 央 助教にお願いしました。…

有機合成化学協会誌2019年8月号:パラジウム-フェナントロリン触媒系・環状カーボネート・素粒子・分子ジャイロコマ・テトラベンゾフルオレン・海洋マクロリド

有機合成化学協会が発行する有機合成化学協会誌、2019年8月号がオンライン公開されました。ひ…

アスピリンから生まれた循環型ビニルポリマー

第212回のスポットライトリサーチは、信州大学線維学部 化学・材料学科 ・風間 茜さん にお願いしま…

Chem-Station Twitter

PAGE TOP