[スポンサーリンク]

化学者のつぶやき

この窒素、まるでホウ素~ルイス酸性窒素化合物~

[スポンサーリンク]

固まりかけた知識は掃除してみても、いいかもしれません。

15族化合物は求核性?

13族化合物はルイス酸性・求電子性である、という安易な分類はもうできない時代に突入しています。[1]例えば、ごく最近、Bath大学のHillらは、簡便な方法で求核性ホウ素マグネシウム化合物を合成する方法を報告しています。[2] 一方で、15族化合物に関してはどうでしょう?
一般的に15族化合物はルイス塩基性・求核性として機能すると理解されていますが、リン化合物の中にはルイス酸として働くもの知られており、最近ではその特徴を活かして触媒として応用する例も報告されています。[3] ところが、窒素を明らかなルイス酸中心として機能する化合物は例がなく、特殊なケースとしては、以前報告したナイトレンとイソニトリルの付加反応によってカルボジアミドが生成する一例が知られています。

ニトレニウム化合物

イスラエル工科大学のGandelmanらは、二配位カチオン性窒素化合物 ニトレニウムが、遷移金属の配位子として利用できることを以前報告しています。[4] 遷移金属錯体の配位子として幅広く利用されているカルベンと等電子構造を持つニトレニウムですが、正電荷を帯びているため、求核性は高くありません。しかし、ピンサー型に修飾することで、その窒素中心がRhやRuなどの金属へ配位可能であることが立証されています。

で、上述の通り、の窒素周りはカルベン炭素と類似の電子環境であることから、中心窒素には形式的に電子対と空のp軌道が存在します。

平面三配位かつ空のp軌道を持つ電子構造は、そう、三配位のホウ素化合物と同じですね。じゃあ、その空軌道ってルイス酸性を示すんじゃないの?ってことで、今回、様々なルイス塩基及び求核剤と反応できる窒素化合物に関する論文がJACS誌に報告されていたので、紹介したいと思います。

ルイス塩基性窒素中心

Alla Pogoreltsev, Yuri Tulchinsky, Natalia Fridman, and Mark Gandelman, J. Am. Chem. Soc. 2017, 139, 4062, DOI: 10.1021/jacs.6b12360

著者らはまず、三つのニトレニウム種10を下記の方法で合成しています。


化合物に対してKPR2(R = Ph or tBu)を反応させたところ、環拡大した12が得られています。中間体11が発生したのちに、リン原子上の電子対が五員環内N-N結合の開裂に寄与しているのでは、と考えた著者らは、次に、その電子対を保護したKP(=O)Ph2もしくはKPPh2・BH3を用いてとの反応を検討しています。


その結果、の中心窒素原子にリンが結合した化合物1314をそれぞれの反応から単離することに成功しました。ニトレニウムを用いても同様の結果が得られています。

(12,13,14の分子構造。図は原著論文より)

 

一方で、10とKPR2との反応では、リン上の電子対を保護していないにも関わらず、上述の中間体11に対応する化合物15を得ることができています。おそらく、10がナフタレン部位で固定された六員環構造を有しているため、環拡大反応の進行を制御できたのではと考えられます。

また、中性のホスフィンPR3 (R = Bu or Me)との反応では、PR310の中心窒素に配位したルイス付加体16が生成することがわかりました。さらに、KP(=O)Ph2、KPPh2・BH3、そしてRLi(R = Bu or Ph)との反応からも、中心窒素が求核攻撃された反応生成物が得られています。

最後に著者らは、ルイス付加体16において、中心窒素上でリン配位子が置換可能であることも示しています。

うまく分子をデザインすれば、ホウ素無しのFLPなんてのも、そのうちできそうな気がしてきますね。
基礎化学者たるもの、元素の持つ基本的な性質を深く理解する過程で、その知識に束縛されてしまう罠に陥ってはいけません。頭の柔軟体操が大切であることを再認識させてくれる論文でした。

参考文献

  1. Douglas W. Stephan, Angew. Chem. Int. Ed. 2017, doi:10.1002/anie.201700721
  2. Anne-Frederique Pecharman, Annie L. Colebatch, Michael S. Hill, Claire L. McMullin, Mary F. Mahon, Catherine Weetman, Nat. Commun, 2017, doi:10.1038/ncomms15022
  3. Christopher B. Caputo, Lindsay J. Hounjet, Roman Dobrovetsky, Douglas W. Stephan, Science, 2013, 341, 1374, doi: 10.1126/science.1241764
  4. Yuri Tulchinsky, Mark A. Iron, Mark Botoshansky, Mark Gandelman, Nat. Chem. 2011, 3, 525, doi: 10.1038/NCHEM.1068

関連書籍

関連リンク

関連記事

  1. 二重芳香族性を示す化合物の合成に成功!
  2. 工程フローからみた「どんな会社が?」~半導体関連
  3. 2014年ケムステ記事ランキング
  4. 有機反応を俯瞰する ーシグマトロピー転位
  5. 有機合成化学協会誌2017年7月号:有機ヘテロ化合物・タンパク質…
  6. 大学院生のつぶやき:UCEEネット、ご存知ですか?
  7. 実験を加速する最新機器たち|第9回「有機合成実験テクニック」(リ…
  8. ナイトレン

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第27回 国際複素環化学会議 (27th ISHC)
  2. 第三回 ナノレベルのものづくり研究 – James Tour教授
  3. ADC薬 応用編:捨てられたきた天然物は宝の山?・タンパクも有機化学の領域に!
  4. トリメトキシフェニルシラン:Trimethoxyphenylsilane
  5. 私が思う化学史上最大の成果-2
  6. 炭酸ビス(ペンタフルオロフェニル) : Bis(pentafluorophenyl) Carbonate
  7. ポメランツ・フリッチュ イソキノリン合成 Pomeranz-Fritsch Isoquinoline Synthesis
  8. 花粉症対策の基礎知識
  9. 家庭での食品保存を簡単にする新製品「Deliéa」
  10. ベンゼンスルホヒドロキサム酸を用いるアルデヒドとケトンの温和な条件下でのアセタール保護反応

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

話題のAlphaFold2を使ってみた

ここ数日、構造生物学界隈で「AlphaFold2」と呼ばれているタンパク質の構造…

フェリックス・カステラーノ Felix N. Castellano

フェリックス・カステラーノ(Felix N. Castellano、19xx年x月xx日(ニューヨー…

「第22回 理工系学生科学技術論文コンクール」の応募を開始

日刊工業新聞社とモノづくり日本会議は、理工系学生(大学生・修士課程の大学院生、工業高等専門学校生)を…

みんなおなじみ DMSO が医薬品として承認!

2021年1月22日、間質性膀胱炎治療薬ジメチルスルホキシド (商品名ジムソ膀胱内注…

中山商事のWebサイトがリニューアル ~キャラクターが光る科学の総合専門商社~

中山商事株式会社のWebサイトがリニューアルされました。新サイトは、オリジナルキャラクタ達がお迎えし…

光触媒水分解材料の水分解反応の活性・不活性点を可視化する新たな分光測定手法を開発

第325回のスポットライトリサーチは、中央大学大学院 応用化学専攻 分光化学システム研究室(片山研究…

太陽ホールディングスってどんな会社?

私たち太陽ホールディングスグループは、パソコンやスマートフォンなどのIT機器やデジタル家電、車載用電…

アレーン三兄弟をキラルな軸でつなぐ

パラジウム/キラルノルボルネン触媒によるヨードアレーンとブロモアレーン、およびアリールボラートとのア…

Chem-Station Twitter

PAGE TOP