[スポンサーリンク]

スポットライトリサーチ

光応答性リキッドマーブルのマイクロリアクターとしての機能開拓

[スポンサーリンク]

第433回のスポットライトリサーチは、大阪工業大学大学院 工学研究科化学・環境・生命工学専攻 高分子材料化学領域微粒子材料化学研究室(藤井研究室)の津村侑亮(つむら ゆうすけ)さんにお願いしました。

藤井研究室では、機能性粒子の合成およびその界面吸着現象を利用したソフト分散体(エマルション、泡、リキッドマーブル、ドライリキッド)の安定化に関する研究に取り組んでいます。今回の研究は、表面を固体粒子で覆うことで気中にて安定化した液滴(リキッドマーブル:LM)をマイクロリアクターとして利用する研究で、「ACS Applied Materials & Interfaces」誌に掲載されるとともに、プレスリリースされています。また、掲載誌のTwitterでも紹介されています。

Photo/Thermo Dual Stimulus-Responsive Liquid Marbles Stabilized with Polypyrrole-Coated Stearic Acid Particles

Yusuke Tsumura, Keigo Oyama, Anne-Laure Fameau, Musashi Seike, Atsushi Ohtaka, Tomoyasu Hirai, Yoshinobu Nakamura, and Syuji Fujii

ACS Applied Materials & Interfaces 2022, 14 (36), 41618-41628.

DOI: 10.1021/acsami.2c12681

研究室を主宰されている藤井秀司 教授より津村さんについてコメントを頂戴いたしました!

津村君は、強い向上心をもって小生の研究室に入研してくれました。研究室での活動を開始してから、水を得た魚のように実験に取り組み、周りの人を巻き込みながら様々なアイデアを出して、リキッドマーブルの研究を大きく前に進めてくれています。今回、研究を学術論文として発表できたのは、津村君の負けん気と執念、そして手先の器用さによるものと思います。今回の論文掲載が刺激となり、さらに研究に熱が入っています。誰も思いつかないようなアイデアを形にして、自分を表現してほしいと思います。

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

応答性のリキッドマーブル (LM)を、マイクロリアクターとして利用することを提案した研究です。
LMとは、疎水的表面を有する固体粒子が気液界面に吸着することで大気中にて安定化した液滴(Liquid-in-Gas 型分散体)のことをいいます。LMの直径は、通常ミリメートルサイズであり、体積は数マイクロリットルから数十マイクロリットルです。LM内部にカプセル化された液体は、固体粒子によって被覆され守られているため、LMが接触する基板にぬれ広がらず、簡単に移動させることができます。
本研究では、光を熱に変換する共役系高分子であるポリピロール(PPy)を相変化物質であるステアリン酸粒子(SA)に被覆したコアシェル型粒子(SA/PPy粒子)を安定化剤として利用し、LMを作製しました。SA/PPy粒子に近赤外線光を照射すると、PPyが発熱し、その熱によってSAが融解し、液体のSAがPPyシェルを破って漏れ出てきます。ガラス基板上に置いたLMに対して下部から近赤外線光を照射すると、基板とLM内部液の接触を遮っていたSA/PPy粒子の融解、基板と内部液の接触、LMの崩壊・内部液の放出がカスケード的に起こることが分かりました (a)。さらに、2つのLMを接触させた後、接触部に近赤外光を局所照射すると、LMの合一、内部液の混合が誘起され、マイクロリットルレベルでの化学反応を起こすことができました (b)。本研究で開発した手法は、望みのタイミングで遠隔的に、微量の反応試薬を用いた化学反応を簡便に起こすことができる点で魅力的だと考えています。

 

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

思い入れがあるのは、LMを合一させ化学反応を行うための光照射装置の開発です。光照射の位置調整が精密にできるように、試行錯誤して装置を作製しました。開発初期段階では、装置の基板に高分子プレートを用いていましたが、親水性が高いため実験の作業性が低く、実験に長時間かかってしまうという問題がありました。そこで、ロウソクの煤で表面を覆った疎水的なガラスプレートを基板として用いることで、この問題を解決することができました。装置の開発にあたり、研究室のメンバーと意見を出し合い協力したことは、とても良い経験になりました。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

本研究で最も苦労したところは、光照射によってLMが合一するメカニズムの考察です。合一メカニズムの解明には、現象の詳細な観察が重要と考えました。そこで、ガラス基板上のLMに対し、下部から光を照射し、LMの状態変化をハイスピードカメラで観察しました。その結果、光照射によってガラス基板とLMの内部液との接触を遮っていた粒子が融解し、基板上にぬれ広がる様子が確認できました。この結果から、粒子の融解により、基板と内部液の距離が短くなり、両者が接触することが分かりました。光照射によるLMの合一も、同様のメカニズムによって起こり、内部液の接触・混合が起こると考察しました。

Q4. 将来は化学とどう関わっていきたいですか?

私は来年度 (2023年度)から、化学メーカーで働くことが決まっています。すでに仕事内容の概要は伝えられており、主に高分子材料の設計・開発を行うことになっています。研究室で学んだ高分子化学・界面化学の知識や経験と企業独自の技術を融合させることで、人々の生活をより快適にする高分子・界面材料の製品開発に取り組み、社会に貢献したいと考えています。残りの在学期間で、自身の幹を強くするため、常に基礎を大切にして研究を行い、様々な観点から現象を見て、理解できるように努力したいと思います。そして何より、これからも楽しんで化学と関わっていきたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

私は、出来るかどうかではなく、とにかくやってみるということが非常に大事だと思っています。研究以外のことでもやってみないとわからないこと、やったからこそわかることも多くあります。また、自身が取り組む研究とは異なる分野にも目を向けることも重要だと思います。私自身、研究で行き詰まった時は自身の研究とはあまり関係がないように思える論文を読むことで他分野の知識を得ました。そうすることで、新たなアイデアが浮かび、研究に活かせたと思います。

最後に、本研究を遂行するにあたり、ご指導いただき、研究の楽しさ・面白さを教えていただいた藤井秀司先生、研究室生活を支えてくださった研究室の皆様に感謝申し上げます。

研究者の略歴

名前:津村侑亮(つむら ゆうすけ)

所属:大阪工業大学大学院 工学研究科化学・環境・生命工学専攻 高分子材料化学領域微粒子材料化学研究室(藤井研究室)

研究テーマ:共役系高分子-脂肪酸複合粒子で安定化された光・熱応答性リキッドマーブルの開発

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. α-トコフェロールの立体選択的合成
  2. 海洋天然物パラウアミンの全合成
  3. 接着系材料におけるマテリアルズ・インフォマティクスの活用 -条件…
  4. Pallambins A-Dの不斉全合成
  5. 第7回HOPEミーティング 参加者募集!!
  6. コランニュレンの安定結合を切る
  7. ケムステイブニングミキサー2017ー報告
  8. 超原子価臭素試薬を用いた脂肪族C-Hアミノ化反応

注目情報

ピックアップ記事

  1. 有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア
  2. 書籍「腐食抑制剤の基礎と応用」
  3. 褐色の要因となる巨大な光合成膜タンパク質複合体の立体構造の解明
  4. 触媒でヒドロチオ化反応の位置選択性を制御する
  5. 「MI×データ科学」コース ~データ科学・AI・量子技術を利用した材料研究の新潮流~
  6. 力を受けると蛍光性分子を放出する有機過酸化物
  7. 低い電位で多電子移動を引き起こす「ドミノレドックス反応」とは!?
  8. 2005年8月分の気になる化学関連ニュース投票結果
  9. 「ニコチンパッチ」6月1日から保険適用
  10. 【日産化学 27卒】 【7/10(木)開催】START your ChemiSTORY あなたの化学をさがす 研究職限定 Chem-Talks オンライン大座談会

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年10月
 12
3456789
10111213141516
17181920212223
24252627282930
31  

注目情報

最新記事

【日産化学 27卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で12領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

hERG阻害 –致死性副作用をもたらす創薬の大敵–

創薬の臨床試験段階において、予期せぬ有害事象 (または副作用) の発生は、数十億円以…

久保田 浩司 Koji Kubota

久保田 浩司(Koji Kubota, 1989年4月2日-)は、日本の有機合成化学者である。北海道…

ACS Publications主催 創薬企業フォーラム開催のお知らせ Frontiers of Drug Discovery in Japan: ACS Industrial Forum 2025

日時2025年12月5日(金)13:00~17:45会場大阪大学産業科学研究所 管理棟 …

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

骨粗鬆症を通じてみる薬の工夫

お久しぶりです。以前記事を挙げてから1年以上たってしまい、時間の進む速さに驚いていま…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP