[スポンサーリンク]

化学者のつぶやき

予期せぬパラジウム移動を経る環化反応でベンゾヘテロールを作る

[スポンサーリンク]

1,2-Pd移動を含む予期せぬ連続反応として進行することがわかり、高収率で生成物が得られた。

 合理的なベンゾヘテロール合成法を計画していたら…

インドールやベンゾフランに代表される五員環芳香族ヘテロ環(ベンゾヘテロール:図1A)は、天然物、医薬品、有機材料などにみられる有用な構造単位であり、その合成法の開発は長年にわたり精力的に行われてきた[1,2]。なかでも、金属触媒存在下、アリールハライドやアリールメタル種とアルケニル基との分子内カップリングが極めて有効な手法として広く活用されている (図1B)[3]。しかしこの方法では、芳香環のオルト位にハロゲンまたは金属置換基をあらかじめ導入しなければならない。

そこで、筆者らは、アルケニル炭素から芳香族炭素への1,4-金属移動を伴う反応を利用して、官能基の導入工程を簡略化したベンゾヘテロールの合成法を考案した (図1C)。本戦略では、出発原料として、モノ置換ブロモアルケン(Ar-XCBr=CH2)を用い、Pd触媒を作用させれば、①C–Br結合の酸化的付加、②1,4-Pd移動、③分子内カルボパラジウム化(C=C結合への付加)、④b-水素脱離、という一連の反応を経て、ベンゾヘテロールが合成できると考えた。モノ置換ブロモアルケンは臭素化と脱離により容易に調製可能であり、Xを変えることで多様なベンゾヘテロール合成へと展開できる。1,4-金属移動を伴う環化反応は、林らによる、Rh触媒を用いたアリールプロパルギルアルコールの環化反応など、いくつかの例が知られており、合理的な戦略であると考えられた[4]

実際反応を行ったところ、高収率でベンゾヘテロールが得られ、当初の予想通り1,4-Pd移動を伴う連続反応が進行したと考えた。しかし、その後の詳細な機構解明により、反応は予想に反して1,4-Pd移動ではなく、これまでに報告例のなかったtrans-1,2-Pd移動を経由して進行していることが明らかとなった (図1D)。つまり、酸化的付加後のPd(II)種が、②C=C二重結合上のa位からtrans-b位に移動し、その後、③芳香環オルト位のC(sp2)–H結合を活性化して六員環パラダサイクルを形成、④還元的脱離という予期せぬ連続反応が進行していることがわかった。

図1. (A) 芳香族複素環化合物 (B) 従来のベンゾヘテロール合成法 (C) 当初の想定反応機構(1,4-Pd移動) (D) 実際の反応機構(1,2-Pd移動)

 

“Synthesis of benzoheterocycles by palladium-catalyzed migratory cyclization through an unexpected reaction cascade.”

Li, W.-C.; Zhang, L.; Bai, S.; Zhao, J.-H.; Liu, G.-R.; Lan, Y.; Chen, S.; Ming, J. Nat. Commun. 2025, 16, 3367.

DOI: 10.1038/s41467-025-58633-5

論文著者の紹介

研究者: Shufeng Chen (陈树峰)

研究者の経歴:

2008                        Ph.D., Peking University, China (Prof. Jianbo Wang)

2008–2009 Lecturer, Inner Mongolia University, China

2009–2014 Associate Professor, Inner Mongolia University, China

2014–                     Professor, Inner Mongolia University, China

研究内容: 遷移金属触媒を用いた新規不斉合成法の開発、グリーンケミストリー

研究者:Jialin Ming (明佳林)

研究者の経歴:

2014–2016 National University of Singapore, Singapore (Prof. Tamio Hayashi)

2019                        Ph.D., Nanyang Technological University, Singapore (Prof. Tamio Hayashi)

2019–2024 Postdoc, Inner Mongolia University, China

2024–                     Professor, Chengdu University, China

研究内容: 遷移金属触媒を用いた新規不斉合成法および多成分連結反応の開発、キラル配位子の設計と開発

研究者:Yu Lan (蓝宇)

研究者の経歴:

2008                        Ph.D., Peking University, China (Prof. Yang Zheng)

2009–2012 PostDoc., University of California, Los Angeles, USA

2012                        Professor, Chongqing University, China

研究内容: フリーラジカルカップリング、遷移金属触媒を用いたC–H官能基化、電子環状反応

論文の概要

Pd(OAc)2/DPEPhos触媒、CsOPiv存在下、モノ置換ブロモアルケン1aをDCE中80 °Cで12時間反応させることで、望みのベンゾホスホールオキシド2aが収率94%で得られた (図2A)。続いて、基質適用範囲を調査したところ、1aの芳香環に種々の官能基をもつアルケンでも反応が進行した (2b–2d)。さらに、同条件でインドール2eやベンゾフラン(2f)、ベンゾチオフェンジオキシド2gも効率よく合成できた。

上述のとおり、本反応は1,4-Pd移動でなく、trans-1,2-Pd移動を経由して進行することが、各種重水素化標識実験およびDFT計算によって示された。1aの芳香環上を全て重水素化 (1a-d10)してもビニル基に重水素が全く導入されないことや、エチニル体2a’およびZ-ブロモエテン誘導体3でも反応が進行することから、ビニル基のb位へのtrans-1,2-Pd移動と芳香環C–H活性化を経た環化が示唆された (図2B)。DFT計算においても、合理的なエネルギープロファイルを示した。より詳細な実験と機構は本文を参照されたい。

さらに、配位子を(R)-DM-segphosに変更することで、リン原子に不斉点をもつ2a2b2hを良好なエナンチオ選択性で合成できた (図2C)。得られた2aからホスフィン配位子L1を調製し、不斉水素化反応において高エナンチオ選択性を示すことも確認された (56)(図2D)。

図2. (A) 最適反応条件と基質適用範囲 (B) 機構解明実験 (C) P-キラル化合物の合成 (D) キラル配位子の合成と不斉反応への応用

以上、計画通りに進めば面白みに欠けたかもしれないが、実験と検証を重ねたことで、全く新しいtrans-1,2-Pd移動機構が見いだされた。予想外の展開が化学的意義をもつ成果へとつながった。

参考文献

  1. (a) Chowdhury, M. G.; Das, R.; Vyas, H.; Sasane, T.; Mori, O.; Kamble, S.; Patel, S.; Shard, A. A Comprehensive Account of Synthesis and Biological Activities of Α‐lidene‐ Benzocycloalkanones and Benzoheterocycles. ChemistrySelect 2022, 7, e202201468. DOI: 10.1002/slct.202201468. (b) Abbas, A. A.; Farghaly, T. A.; Dawood, K. M. Recent Advances on Anticancer and Antimicrobial Activities of Directly-Fluorinated Five-Membered Heterocycles and Their Benzo-Fused Systems. RSC Adv. 2024, 14, 19752–19779. DOI: 10.1039/D4RA01387E.
  2. (a) Baumgartner, T. Insights on the Design and Electron-Acceptor Properties of Conjugated Organophosphorus Materials. Acc. Chem. Res. 2014, 47, 1613–1622. DOI: doi.org/10.1021/ar500084b. (b) Ren, Y.; Baumgartner, T. Combining Form with Function – the Dawn of Phosphole-Based Functional Materials. Dalton Trans. 2012, 41, 7792–7800. DOI: 10.1039/c2dt00024e. (c) Matano, Y.; Imahori, H. Design and Synthesis of Phosphole-Based π Systems for Novel Organic Materials. Org. Biomol. Chem. 2009, 7, 1258–12. DOI: 10.1039/b819255n. (d) Allen, M. C.; Fuhrer, W.; Tuck, B.; Wade, R.; Wood, J. M. Renin Inhibitors. Synthesis of Transition-State Analog Inhibitors Containing Phosphorus Acid Derivatives at the Scissile Bond. J. Med. Chem. 1989, 32, 1652–1661. DOI: 10.1021/jm00127a041. (e) Mucha, A.; Kafarski, P.; Berlicki, Ł. Remarkable Potential of the α-Aminophosphonate/Phosphinate Structural Motif in Medicinal Chemistry. J. Med. Chem. 2011, 54, 5955–5980. DOI: 10.1021/jm200587f.
  3. (a) Zeni, G.; Larock, R. C. Synthesis of Heterocycles via Palladium-Catalyzed Oxidative Addition. Chem. Rev. 2006, 106, 4644–4680. DOI: 10.1021/cr0683966.  (b) Kaur, N. Palladium Catalysts: Synthesis of Five-Membered N -Heterocycles Fused with Other Heterocycles. Catalysis Reviews 2015, 57, 1–78. DOI: 10.1080/01614940.2014.976118. (c) Wu, X.-F.; Neumann, H.; Beller, M. Synthesis of Heterocycles via Palladium-Catalyzed Carbonylations. Chem. Rev. 2013, 113, 1–35. DOI: 10.1021/cr300100s. (d) Kaur, N. Palladium-Catalyzed Approach to the Synthesis of S-Heterocycles. Catalysis Reviews 2015, 57, 478–564. DOI: 10.1080/01614940.2015.1082824. (e) Braun, M. Stereoselective Domino Heck‐Suzuki Reactions. Eur. J. Org. Chem. 2023, 26, e202201282. DOI: 10.1002/ejoc.202201282. (f) Gandeepan, P.; Müller, T.; Zell, D.; Cera, G.; Warratz, S.; Ackermann, L. 3d Transition Metals for C–H Activation. Chem. Rev. 2019, 119, 2192–2452. DOI: 10.1021/acs.chemrev.8b00507.
  4. Shintani, R.; Okamoto, K.; Hayashi, T. Rhodium-Catalyzed Isomerization of α-Arylpropargyl Alcohols to Indanones: Involvement of an Unexpected Reaction Cascade. J. Am. Chem. Soc. 2005, 127, 2872–2873. DOI: 10.1021/ja042582g
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 水素社会実現に向けた連続フロー合成法を新開発
  2. 韓国チームがiPS細胞の作製効率高める化合物を発見
  3. サイコロを作ろう!
  4. 第8回 野依フォーラム若手育成塾
  5. 私が思う化学史上最大の成果-1
  6. 有機フォトレドックス触媒による酸化還元電位を巧みに制御した[2+…
  7. 第38 回化学反応討論会でケムステをみたキャンペーン
  8. ノーベル賞への近道?ー研究室におけるナレッジマネジメントー

注目情報

ピックアップ記事

  1. ケムステも出ます!サイエンスアゴラ2013
  2. 総合化学4社、最高益を更新 製造業の需要高く
  3. 製薬外資、日本へ攻勢 高齢化で膨らむ市場
  4. クライン・プレログ表記法 Klyne-Prelog Nomenclature System
  5. 有機触媒 / Organocatalyst
  6. SchultzとKay: 米スクリプス研究所のトップへ
  7. Advanced Real‐Time Process Analytics for Multistep Synthesis in Continuous Flow
  8. エーザイ、アルツハイマー治療薬でスウェーデン企業と提携
  9. 第71回「分子制御で楽しく固体化学を開拓する」林正太郎教授
  10. 学振申請書の書き方とコツ

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2025年6月
 1
2345678
9101112131415
16171819202122
23242526272829
30  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP