[スポンサーリンク]

化学者のつぶやき

アミン存在下にエステル交換を進行させる触媒

エステルは香料や医薬品などの部分構造として重要です。合成法としてのエステル交換は様々な酸触媒によって促進されることが知られています。もっとも古典的な条件はFischer法と呼ばれ、硫酸などの強力な酸を用いて加熱条件にて行われます。ただ、そのような激しい条件は、多くの官能基をもつ複雑化合物への適用は難しいです。現在でも穏和に効率よくエステルを合成すべく、多くの触媒開発研究が続けられています。

アミン官能基存在下に人工的にエステル交換を起こすことは、これまで不可能とされてきました。アルコールよりもアミンのほうが求核性が高いため、アミド形成のほうが優先してしまうのです。 このため、予めアミンを保護してから反応を行い、脱保護するという冗長なプロセスが必要不可欠でした。(有機って面白いよね!「無保護のペプチド合成を目指して」も参照ください)

大阪大・真島教授・大嶋准教授らのグループが開発した、亜鉛四核クラスター触媒[1]は、この教科書的常識を覆しました。

たとえば、下のような基質を用いた場合、アルコールとだけエステル交換を起こすことができます[1a]。アミドはほとんど生成してきません。THPなどのよ うな酸に不安定な官能基をもつものでも、収率良く反応が進行します。(相応の加熱は必要ですが)エステル合成はもちろん、新しい選択的保護・脱保護用途に も有用ではないでしょうか。

transester1.gif

  このクラスターは酵素類似のメカニズムでエステル交換を起こす、と筆者らは推測しています。すなわち、求核剤であるアルコールと、求電子剤であるエステル を二つのオキソフィリックな亜鉛が近傍に担持・活性化して反応を促進させている、というものです(上図破線内)。読みとれるデータだけでは正直、実験的根 拠に乏しいという感が否めないですが、今後の機構解析によってその詳細が明らかになってゆくことを期待したいと思います。

  • 関連文献
[1] (a) Ohshima, T.; Mashima, K. et al. J. Am. Chem. Soc. 2008, ASAP. DOI: 10.1021/ja711349r (b) Ohshima, T.; Iwasaki, T.; Mashima, K. Chem. Commun. 2006, 2711. DOI: 10.1039/b605066b

  • 関連書籍
Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes
Oxford Univ Pr (Sd)
Paul T. Anastas(編集)Tracy C. Williamson(編集)
発売日:1998-10
Vch Verlagsgesellschaft Mbh
Masakatsu Shibasaki(著)Yoshinori Yamamoto(著)
発売日:2004-11-30
  • 関連リンク

Mashima Lab. 大阪大学・真島研究室のホームページ

Ohshima Research Group 大阪大学・大嶋准教授のホームページ

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 化学に関係ある国旗を集めてみた
  2. 神秘的な海の魅力的アルカロイド
  3. ChemDrawの使い方【作図編②:触媒サイクル】
  4. 炭素を1つスズに置き換えてみたらどうなる?
  5. 優れた研究者は優れた指導者
  6. 魅惑の薫り、漂う香り、つんざく臭い
  7. 「有機合成と生化学を組み合わせた統合的研究」スイス連邦工科大学チ…
  8. 砂糖水からモルヒネ?

コメント

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

注目情報

ピックアップ記事

  1. マックス・プランク Max Planck
  2. サーバーを移転しました
  3. ワートン反応 Wharton Reaction
  4. ADC薬基礎編: 着想の歴史的背景と小分子薬・抗体薬との比較
  5. SDFって何?~化合物の表記法~
  6. 亜鉛挿入反応へのLi塩の効果
  7. マイケル・オキーフィ Michael O’Keeffe
  8. 光触媒の活性化機構の解明研究
  9. 水分子が見えた! ー原子間力顕微鏡を用いた水分子ネットワークの観察ー
  10. みんなーフィラデルフィアに行きたいかー!

注目記事

関連商品

注目情報

試薬検索:東京化成工業



注目情報

最新記事

誰も教えてくれなかった 実験ノートの書き方 (研究を成功させるための秘訣)

概要悪い例とよい例を比較しながら,実験ノートを具体的にどう書けばよいのかを懇切丁寧に説明する…

神経変性疾患関連凝集タンパク質分解誘導剤の開発

第114回のスポットライトリサーチは、東京大学大学院薬学系研究科博士後期課程2年の山下 博子(やまし…

銀イオンクロマトグラフィー

以前、カラムクロマトグラフィーの吸引型手法の一つ、DCVCについてご紹介致しました。前回は操作に…

ニセ試薬のサプライチェーン

偽造試薬の一大市場となっている中国。その製造・供給ルートには、近所の印刷店など、予想だにしない人々ま…

どっちをつかう?:adequateとappropriate

日本人学者の論文で形容詞「adequate」と「appropriate」が混同されることはしばしば見…

大麻から作られる医薬品がアメリカでオーファンドラッグとして認証へ

FDA(アメリカ食品医薬品局)*1 は、ジャマイカの科学者 Dr. Henry Lowe によって開…

Chem-Station Twitter

PAGE TOP