[スポンサーリンク]

化学者のつぶやき

炭素をつなげる王道反応:アルドール反応 (1)

[スポンサーリンク]

アルドール反応(Aldol reaction)を御存じだろうか?

歴史、原理、応用、有用性、方法論・・・諸々の観点から、有機合成化学において最重要視されてきた化学反応の一つであり、「有機化学反応の王道」とも呼ばれる存在である。

本シリーズでは、アルドール反応の特徴、歴史的マイルストーンとなった研究、最近の動向などについて、順を追って解説してみたい。

まず第1回目は、アルドール反応とは何か?という基本事項から。

アルドール反応とは?

アルドール反応を知らない人の為に、まずは簡潔に説明してみよう。 アルドール反応の定義は以下の通りである。

【α水素をもつカルボニル化合物から発生したエノラート(エノール)がもう一つのカルボニル化合物へ求核付加し、β-ヒドロキシカルボニル化合物を与える反応】

図1:アルドール反応

この一つの反応だけで、過去から現在にわたり膨大な研究が行われている。なぜ、こうまで化学者の興味を惹き、また重宝されているのだろうか? 概して、以下の4つの価値がその理由とされている。

① 新しい炭素-炭素結合を作ることが出来る
有機化合物の基本骨格を、二つのフラグメントを結合する形で繋げ、より複雑なものに出来る。

② 官能基を豊富に持った生成物が得られる 
あとあと、好きな構造に変換することが簡単。

③ 連続する不斉炭素を作れる

不斉合成法へと展開できれば反応価値を向上でき、生物活性物質の精密合成にも有用となる。

原子効率の高い反応

ゴミを少なく出来る、環境に優しい反応。

この特徴ゆえに、複雑化合物を効率合成する必要がある医薬品産業などに、とりわけ需要の高い反応とされている。

古典的条件とその難点

アルドール反応そのものは、Charles Adolphe WurtzおよびAlexander Borodinらによって、19世紀後半に独立に発見された。

当初の古典的条件は、硫酸などのブレンステッド酸、もしくはプロトン性溶媒+ナトリウムエトキシドなどといった、ブレンステッド塩基を用いて進行させるものだった(図)。

図2:古典的アルドール反応のメカニズム

図:古典的アルドール反応のメカニズム

これは、エノラート(エノール)を発生させる条件としては、かなり強力なものである。それゆえ、コントロールがとても難しいという欠点があった。もっと役立つ反応にするには、以下の3点を解決する必要があった。

① 化学選択性の制御 → 沢山の副生成物を減らし、欲しいものだけを合成したい
② 可逆・平衡条件の回避 → 化合物によっては、収率が上がらないのを何とかしたい
③ 交差反応の促進 → 同種縮合を抑えることで、反応に一般性・多様性をもたせたい

この問題解決にむけ、下記年表に示すとおり、現在に至るまで数え切れないほどの研究が為されることになる。その発展の歴史については、次回から順を追って述べてみたいと思う。

図1:アルドール反応のマイルストーンとなった研究年表(MacMillan研セミナー資料より引用)

年表:アルドール反応のマイルストーンとなった研究一覧(MacMillan研セミナー資料より引用)

 

(※本稿は以前公開していた記事に現代事情を加筆・修正したうえで、ブログに移行したものです)
(2001.6.4 執筆 by ブレビコミン、2015. 9.19 加筆修正 by cosine)

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. リン–リン単結合を有する化合物のアルケンに対する1,2-付加反応…
  2. シクロファン+ペリレンビスイミドで芳香環を認識
  3. ピリジン同士のラジカル-ラジカルカップリング
  4. 【イベント】「化学系学生のための企業研究セミナー」「化学系女子学…
  5. 超多剤耐性結核の新しい治療法が 米国政府の承認を取得
  6. 有機合成化学の豆知識botを作ってみた
  7. 外国人研究者あるある
  8. プラナーボラン - 有機エレクトロニクス界に期待の新化合物

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ポリ乳酸 Polylactic Acid
  2. 分子積み木による新規ゼオライト合成に成功、産総研
  3. ニーメントウスキー キノリン/キナゾリン合成 Niementowski Quinoline/Quinazoline Synthesis
  4. ロルフ・ミュラー Rolf Muller
  5. 第13回 次世代につながる新たな「知」を創造するー相田卓三教授
  6. 天野 浩 Hiroshi Amano
  7. キラルオキサゾリジノン
  8. リガンド指向性化学を用いたGABAA受容体の新規創薬探索法の開発
  9. 野依不斉水素化反応 Noyori Asymmetric Hydrogenation
  10. デヴィッド・クレネマン David Klenerman

関連商品

注目情報

注目情報

最新記事

第59回―「機能性有機ナノチューブの製造」清水敏美 教授

第59回の海外化学者インタビューは日本から、清水敏美 教授です。独立行政法人産業技術総合研究所(AI…

高分子鎖デザインがもたらすポリマーサイエンスの再創造 進化する高分子材料 表面・界面制御アドバンスト コース

詳細・お申込みはこちら日時2020年 4月16日(木)、17日(金)全日程2日間  …

光で水素を放出する、軽量な水素キャリア材料の開発

第248回のスポットライトリサーチは、東京工業大学物質理工学院(宮内研究室)・河村 玲哉さんにお願い…

大幸薬品、「クレベリン」の航空輸送で注意喚起 搭載禁止物質や危険物に該当?

大幸薬品は、同社が展開する「クレベリンシリーズ」の航空輸送について、注意喚起を行っている。  (引用…

第58回―「集積構造体を生み出すポリマー合成」Barney Grubbs教授

第58回の海外化学者インタビューは、バーニー・グラブス教授です。ダートマス大学化学科に所属(訳注:現…

サム・ゲルマン Samuel H. Gellman

サミュエル・H・ゲルマン(Samuel H. Gellman、19xx年xx月xx日-)は、アメリカ…

Chem-Station Twitter

PAGE TOP