[スポンサーリンク]

一般的な話題

癸巳の年、世紀の大発見

 

皆様、明けましておめでとうございます。2013年、今年の干支癸巳(みずのとみ、きし)ですね。(みずのと、き)は、陰陽五行説で水の陰であり、ここから日本では「みずのと」(水の弟)とも言うようです。(み、し)はご存知「へび」。蛇は穀倉を荒らす鼠を食べる有難い動物で、古来から畏怖と崇拝の対象です。長い体は長寿に通じ、脱皮することが再生や生命力を示すとされます。

干支は十干十二支で60年周期で同じ干支がやってきます。前回の癸巳、60年前は1953年となりますね。そして1953年といえば、科学史上に惨然と輝く世紀の大発見『DNAの分子構造』がワトソン、クリックにより発表された年であります。

癸巳の年の始まりにちなんで、ワトソンらの偉業を振り返ってみましょう。

「DNAの分子構造」の解明

ジェームズ・ワトソンとフランシス・クリックは、アデニン (A) 、チミン (T)、グアニン (G) 、シトシン (C)の四塩基とデオキシリボース(糖)とリン酸基の分子模型を使い、「DNAの分子構造は2本のDNA鎖がらせん状に連なった構造である」ことを解明しました。この発見は1953年4月25日に発行されたNature,171巻1356号にて発表されました。たった1ページちょっとの論文。

Watson, J.D. & Crick, F.H.C., “Molecular structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid’, Nature, 171, 737-738 (1953).

この研究は後の分子生物学の研究をもたらしたことから、9年後の1962年にワトソン、クリックはモーリス・ウィルキンスとともにノーベル生理学・医学賞を受賞しています。

 

ワトソン著『2重らせん』

受賞の6年後1968年に、ワトソンは発見までのいきさつをナマナマしく記したドキュメント “The Double Helix” (二重らせん) を出版し、世界的なベストセラーとなりました。

彼は「大きな賞をとったら本を出す」と予め考え、日々の記録をとっていたそうです。なるほど、流石のリアリティー。まだ20代の若い研究者である彼の、野心、日々の苦悩、競争の焦り、発見の感動などなど、読んで熱くなります。

ここに記されたのは綺麗事ではなく、科学界にも名誉欲が渦巻いており、科学者達はライバルに先んじようとあの手この手で成功をつかみ取ろうという姿でした。

「ある考えを危険をおかして実行してみようともしない、鳴かず飛ばずの大学教授で終わるより、有名になった自分を想像したほうが、楽しいに決まっている」

ワトソンは、ボスに隠れて研究をする、データを盗み見る、未発表論文の内容を知ろうとするなど、姑息な手段をこれでもかと講じています。あまりに正直に記したことで、世紀の大発見であるDNAの分子構造は、実は剽窃事件とも捉えられ、賛否両論を巻き起こしました。

 

TED Talks

TED2005のオープニングを飾ったワトソンの講演を動画で見られます(字幕付きです、ご安心を)。生い立ち、DNA構造解明、そしてDNA研究の今後について語っています。ジョークまじりで会場は爆笑です。

TED Talks:ジェームズ・ワトソンが語る「DNA構造解明にいたるまで」

遺伝学者であるワトソンは、提案した分子構造を有機化学者に見せに行き、構造の誤りを指摘されます。その翌日、2時間足らずで一挙にDNA分子構造が解明されました。
成功の秘訣として「その場で自分が一番できる人間にならないこと」と語っています。つまり、各分野で自分より優れた人間を知っておき、相談できるようにしておくという事です。

ところでヘビ年のいま、DNA2重らせん構造を見ていると2匹のヘビが絡みあってるように見えてきちゃいました。当時DNA研究をやっている東洋人が居て、「今年はヘビ年だったなぁ」とかふと思ったらば、もう少し早く構造が解けたかも?なんてw

さてさて、今年の癸巳はどんな発見が待っているんでしょうか?今から楽しみですね。

 

関連書籍

 

関連記事

  1. メチオニン選択的なタンパク質修飾反応
  2. ノーベル賞化学者と語り合おう!「リンダウ・ノーベル賞受賞者会議」…
  3. カルベンで挟む!
  4. ノーベル化学賞を受けた企業人たち
  5. 有機合成化学者が不要になる日
  6. 芳香族フッ素化合物の新規汎用合成法
  7. 消せるボールペンのひみつ ~30年の苦闘~
  8. 目指せ!フェロモンでリア充生活

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. イタリアに医薬品販売会社を設立 エーザイ
  2. 光触媒が可能にする新規C-H/N-Hカップリング
  3. ジョン・スティル John K. Stille
  4. pre-ELM-11
  5. スワーン酸化 Swern Oxidation
  6. Grubbs第二世代触媒
  7. ボールマン・ラーツ ピリジン合成 Bohlmann-Rahtz Pyridine Synthesis
  8. フラーレン:発見から30年
  9. 新規抗生物質となるか。Pleuromutilinsの収束的短工程合成
  10. 中西香爾 Koji Nakanishi

関連商品

注目情報

注目情報

最新記事

酵素触媒によるアルケンのアンチマルコフニコフ酸化

酵素は、基質と複数点で相互作用することにより、化学反応を厳密にコントロールしています。通常のフラ…

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

Chem-Station Twitter

PAGE TOP