[スポンサーリンク]

一般的な話題

反応機構を書いてみよう!~電子の矢印講座・その1~

[スポンサーリンク]

「ある反応がどのようにして起こっているか?」について記述したものが反応機構(reaction mechanism)です。一つの反応機構は、反応に関わる全ての結合の開裂・生成様式を示します。つまり、どの結合がどういう順番で切れ、どの結合がどういう順番でできるか、ということが必要十分に表現されていなくてはなりません。

有機化学反応の本質は電子の授受にあります。そのため反応機構は、電子の移動で表現されます。

もちろん現実は紙の上より複雑・多様です。実際に電子が一つずつ移動するわけではありません。これで得られるのはあくまで定性的な理解ですが、有機化学反応を適切に分類して理解しやすくし、また、より深く理解するためのツールとして非常に強力です。

そこで本シリーズでは、反応機構図を書くためのポイントを解説していきたいと思います。

有機化学を学ぶ人は是非マスターしておくべきものですので、反応機構が自分でうまく説明できないとお困りの方は是非参考にしてみてください!

 

反応機構を矢印で書く

有機反応の中身は電子の授受であると書きました。このやりとりは、定性的に「巻矢印」で表現する慣例になっています。

たとえば有用人名反応の一つ、ホーナー・ワズワース・エモンス反応の反応機構は下図のようになります。

hwe_5

有機化学を学ぶ学生の多くは、まずこの矢印表記につまづくようです。実験技術に長けていても、矢印の書き方を知らない大学院生は実にたくさんいます。

確かに矢印が書けずとも実験は進められます。どんな結果が期待できるかさえ知っていれば何とかなるからです。しかし、それではいつまでたっても「化学=暗記物」の図式から抜け出せません。実験結果を深く理解し、さらなる応用へと結びつけていくことも難しいと思えます。

矢印を使った反応機構を書けるようになること――これはレベルの高い有機化学研究をしたいのであれば、習得を避けては通れないスキルであるといえます。単なる「実験事実」から、「サイエンス」へと実験結果を発展させていくための“思考ツール”、つまりは一つ一つの結合変換について深く理解し、学んだ知見をさらに発展させていく目的に大変な優れた記述法だからです。

はじめは大変かも知れませんが、ひとたびマスターすれば、化学的思考力が格段にアップすることは確実です。 是非、正しい「電子の矢印の書き方」を習得しましょう。

矢印の決まりごと

大きく分けて以下の3つがあります。

①電子対(電子2つ)の動きを表す時には、普通の矢印を使う 

②電子1つの動きを表す時には、釣り針型の半矢印を使う

③巻矢印内側にある原子の電子数は変わらない

③は分かりづらいかも知れませんので、下図・右のケースを例に考えてみましょう。A-Bの共有結合電子対がCに移るケースで、極性転位反応などに多く見られるパターンです。

上スキームのように破線を使って書くと、A上の電子数は変わらずに、B上の電子がCに持って行かれる表記になります。他方、下スキームのように書くと、B上の電子数は変わらず、A上の電子が持って行かれる、という表記になります。

どちらも同じ結合から矢印が伸びる機構ですが、全く異なる意味になっていることを知っておいてください。

一方、曲がっていない矢印は何を表しているのでしょうか?これは、化学種同士を関係づける表記です。多用されるものは以下の3つです。

電子の動かし方

電子の動きを考えるのは一見複雑そうです。しかし、実は常識的な感覚に従えば良く、難しく捉えすぎる必要はありません。

以下のポイントを押さえておけばとりあえずOKでしょう。

①矢印(電子の動き)はマイナス電荷を帯びた『求核種』から、プラス電荷を帯びた『求電子種』へ移動する。
②電子の移動しやすさ(負電荷を持つ優先度)は電気陰性度で決まる

ざっくり言ってしまえば、世にある反応機構のほとんどは、プラスとマイナスが結びつくことの繰り返しで書ける、ということです。たとえば、プラスが出にくい元素にプラスを出そうとしたり、マイナスとマイナスが反応するような機構は、間違っている可能性が高い、ということです(勿論例外はあります)。

次回は実例を挙げつつ、反応機構をどうやって書くか?についてお話ししたいと思います。

(※本記事は以前より公開されていたものを加筆修正し、「つぶやき」に移行したものです。)

関連書籍

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. クロム光レドックス触媒を有機合成へ応用する
  2. 「さくら、さくら」劇場鑑賞券プレゼント結果発表!
  3. 有機機能性色素におけるマテリアルズ・インフォマティクスの活用とは…
  4. Googleマイマップを持って学会に出かけよう!
  5. 第28回Vシンポ「電子顕微鏡で分子を見る!」を開催します!
  6. 【書籍】「世界一美しい数学塗り絵」~宇宙の紋様~
  7. 化学Webギャラリー@Flickr 【Part4】
  8. 信じられない!驚愕の天然物たちー顛末編ー

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 電場を利用する効率的なアンモニア合成
  2. よくわかる最新元素の基本と仕組み―全113元素を完全網羅、徹底解説 元素の発見史と最新の用途、研究
  3. フラーレン:発見から30年
  4. タンパク質の定量法―ブラッドフォード法 Protein Quantification – Bradford Protein Assay
  5. 比色法の化学(後編)
  6. ボリルアジドを用いる直接的アミノ化
  7. 第22回 化学の複雑な世界の源を求めてーLee Cronin教授
  8. 「極ワイドギャップ半導体酸化ガリウムの高品質結晶成長」– カリフォルニア大学サンタバーバラ校・Speck研より
  9. 「人工タンパク質ケージを操る」スイス連邦工科大学チューリヒ校・Hilvert研より
  10. ヘルベルト・ワルトマン Herbert Waldmann

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2008年8月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

高分子材料におけるマテリアルズ・インフォマティクスの活用:高分子シミュレーションの応用

開催日:2024/07/17 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

そうだ、アルミニウムを丸裸にしてみようじゃないか

N-ヘテロ環ボリロキシ配位子を用いることで、アニオン性かつ非環式、さらには“裸“という極めて不安定な…

カルベンがアシストする芳香環の開環反応

カルベンがアシストする芳香環の開環反応が報告された。カルベンとアジドによる環形成でナイトレンインダゾ…

有機合成化学協会誌2024年7月号:イミン類縁体・縮環アズレン・C–O結合ホモリシス・ハロカルビン・触媒的バイオマス分解

有機合成化学協会が発行する有機合成化学協会誌、2024年7月号がオンライン公開されています。…

分子研「第139回分子科学フォーラム」に参加してみた

bergです。この度は2024年7月3日(水)にオンラインにて開催された、自然科学研究機構 分子科学…

光の色で反応性が変わる”波長選択的”な有機光触媒

照射する可視光の波長によって異なる反応性を示す、新規可視光レドックス触媒反応が開発された。赤色光照射…

ロタキサンを用いた機械的刺激に応答する効率的な分子放出

軸状分子に複数の積み荷分子をもつロタキサンを用いることで効率的に分子を放出するシステムが報告された。…

鉄触媒反応へのお誘い ~クロスカップリング反応を中心に~

はじめにパラジウムなどのレアメタルを触媒としたカップリング反応は、有機EL材料、医農薬、半導体材…

Sim2Realマテリアルズインフォマティクス:データの乏しさを分子シミュレーションにより克服する

開催日:2024/07/10 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

ある動脈硬化の現象とマイクロ・ナノプラスチックのはなし

Tshozoです。マイクロプラスチックについては以前から関連記事(1,2)を書いたり定期的に…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP