[スポンサーリンク]

一般的な話題

反応機構を書いてみよう!~電子の矢印講座・その1~

[スポンサーリンク]

「ある反応がどのようにして起こっているか?」について記述したものが反応機構(reaction mechanism)です。一つの反応機構は、反応に関わる全ての結合の開裂・生成様式を示します。つまり、どの結合がどういう順番で切れ、どの結合がどういう順番でできるか、ということが必要十分に表現されていなくてはなりません。

有機化学反応の本質は電子の授受にあります。そのため反応機構は、電子の移動で表現されます。

もちろん現実は紙の上より複雑・多様です。実際に電子が一つずつ移動するわけではありません。これで得られるのはあくまで定性的な理解ですが、有機化学反応を適切に分類して理解しやすくし、また、より深く理解するためのツールとして非常に強力です。

そこで本シリーズでは、反応機構図を書くためのポイントを解説していきたいと思います。

有機化学を学ぶ人は是非マスターしておくべきものですので、反応機構が自分でうまく説明できないとお困りの方は是非参考にしてみてください!

 

反応機構を矢印で書く

有機反応の中身は電子の授受であると書きました。このやりとりは、定性的に「巻矢印」で表現する慣例になっています。

たとえば有用人名反応の一つ、ホーナー・ワズワース・エモンス反応の反応機構は下図のようになります。

hwe_5

有機化学を学ぶ学生の多くは、まずこの矢印表記につまづくようです。実験技術に長けていても、矢印の書き方を知らない大学院生は実にたくさんいます。

確かに矢印が書けずとも実験は進められます。どんな結果が期待できるかさえ知っていれば何とかなるからです。しかし、それではいつまでたっても「化学=暗記物」の図式から抜け出せません。実験結果を深く理解し、さらなる応用へと結びつけていくことも難しいと思えます。

矢印を使った反応機構を書けるようになること――これはレベルの高い有機化学研究をしたいのであれば、習得を避けては通れないスキルであるといえます。単なる「実験事実」から、「サイエンス」へと実験結果を発展させていくための“思考ツール”、つまりは一つ一つの結合変換について深く理解し、学んだ知見をさらに発展させていく目的に大変な優れた記述法だからです。

はじめは大変かも知れませんが、ひとたびマスターすれば、化学的思考力が格段にアップすることは確実です。 是非、正しい「電子の矢印の書き方」を習得しましょう。

矢印の決まりごと

大きく分けて以下の3つがあります。

①電子対(電子2つ)の動きを表す時には、普通の矢印を使う 

②電子1つの動きを表す時には、釣り針型の半矢印を使う

③巻矢印内側にある原子の電子数は変わらない

③は分かりづらいかも知れませんので、下図・右のケースを例に考えてみましょう。A-Bの共有結合電子対がCに移るケースで、極性転位反応などに多く見られるパターンです。

上スキームのように破線を使って書くと、A上の電子数は変わらずに、B上の電子がCに持って行かれる表記になります。他方、下スキームのように書くと、B上の電子数は変わらず、A上の電子が持って行かれる、という表記になります。

どちらも同じ結合から矢印が伸びる機構ですが、全く異なる意味になっていることを知っておいてください。

一方、曲がっていない矢印は何を表しているのでしょうか?これは、化学種同士を関係づける表記です。多用されるものは以下の3つです。

電子の動かし方

電子の動きを考えるのは一見複雑そうです。しかし、実は常識的な感覚に従えば良く、難しく捉えすぎる必要はありません。

以下のポイントを押さえておけばとりあえずOKでしょう。

①矢印(電子の動き)はマイナス電荷を帯びた『求核種』から、プラス電荷を帯びた『求電子種』へ移動する。
②電子の移動しやすさ(負電荷を持つ優先度)は電気陰性度で決まる

ざっくり言ってしまえば、世にある反応機構のほとんどは、プラスとマイナスが結びつくことの繰り返しで書ける、ということです。たとえば、プラスが出にくい元素にプラスを出そうとしたり、マイナスとマイナスが反応するような機構は、間違っている可能性が高い、ということです(勿論例外はあります)。

次回は実例を挙げつつ、反応機構をどうやって書くか?についてお話ししたいと思います。

(※本記事は以前より公開されていたものを加筆修正し、「つぶやき」に移行したものです。)

関連書籍

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. Ph.D.化学者が今年のセンター試験(化学)を解いてみた
  2. ゾウががんになりにくい本当の理由
  3. 柔軟な小さな分子から巨大環状錯体を組み上げる ~人工タンパク質へ…
  4. 手術中にガン組織を見分ける標識試薬
  5. 【追悼企画】世のためになる有機合成化学ー松井正直教授
  6. アルキンから環状ポリマーをつくる
  7. 副反応を起こしやすいアミノ酸を迅速かつクリーンに連結する
  8. 微生物の電気でリビングラジカル重合

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 立体規則性および配列を制御した新しい高分子合成法
  2. 日本化学会第85回春季年会
  3. 鉄触媒空気酸化を伴う触媒的光延反応
  4. 光触媒で抗菌・消臭 医療用制服、商品化へ 豊田通商 万博採用を機に
  5. クリーンなラジカル反応で官能基化する
  6. ジェイムス・ブル エナンチオ過剰率決定法 James-Bull Method for Determination of Enantiomeric Excess
  7. ナタデココ、次世代の薄型ディスプレー基板に活用
  8. シンポジウム・向山先生の思い出を語る会
  9. チャップマン転位 Chapman Rearrangement
  10. 流れる電子ッ!壊れるピリジンッ!含窒素多環式骨格構築!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2008年8月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

プロトン共役電子移動を用いた半導体キャリア密度の精密制御

第582回のスポットライトリサーチは、物質・材料研究機構(NIMS) ナノアーキテクトニクス材料研究…

有機合成化学協会誌2023年11月号:英文特別号

有機合成化学協会が発行する有機合成化学協会誌、2023年11月号がオンライン公開されています。…

高懸濁試料のろ過に最適なGFXシリンジフィルターを試してみた

久々の、試してみたシリーズ。今回試したのはアドビオン・インターチム・サイエンティフィ…

細胞内で酵素のようにヒストンを修飾する化学触媒の開発

第581回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

カルロス・シャーガスのはなし ーシャーガス病の発見者ー

Tshozoです。今回の記事は8年前に書こうと思って知識も資料も足りずほったらかしておいたのです…

巨大な垂直磁気異方性を示すペロブスカイト酸水素化物の発見 ―水素層と酸素層の協奏効果―

第580回のスポットライトリサーチは京都大学大学院工学研究科物質エネルギー化学専攻 陰山研究室の難波…

2023年度第1回日本化学連合シンポジウム「ヒューメインな化学 ~感覚の世界に化学はどう挑むか~」

人間の幸福感は、五感に依るところが大きい。化学は文明的で健康的な社会を支える物質を継続的に産み出して…

超難溶性ポリマーを水溶化するナノカプセル

第579回のスポットライトリサーチは東京工業大学 化学生命科学研究所 吉沢・澤田研究室の青山 慎治(…

目指せ抗がん剤!光と転位でインドールの(逆)プレニル化

可視光レドックス触媒を用いた、インドール誘導体のジアステレオ選択的な脱芳香族的C3位プレニル化および…

マテリアルズ・インフォマティクスに欠かせないデータ整理の進め方とは?

開催日:2023/11/29 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP