[スポンサーリンク]

化学者のつぶやき

C–C, C–F, C–Nを切ってC–N, C–Fを繋げるβ-フルオロアミン合成

[スポンサーリンク]

パラジウム触媒を用いた、アジリジンの二官能基化によってβ-フルオロアミンが合成された。β-フッ素脱離およびフッ素の配位子移動によるアジリジンの開環が鍵である。

アジリジンの二官能基化によるβ-フルオロアミンの合成

β-フルオロアミンは、フッ素の導入に伴い塩基性、pKaが調整でき、薬理活性の向上につながることから創薬分野で興味関心が高まっている構造の一つである。例えばメルク社が開発した抗がん活性をもつMK-0731では、アミンβ位にフッ素を導入することで活性が向上し、さらに副作用が低減した(図1A)[1]。β-フルオロアミンの合成法の一つとして、アジリジンの開環を伴う手法が知られる(図1B)[2]。しかし、この手法ではTBAFやXtalFluor-E®などのフッ素化剤を過剰量必要とし、原子効率が低い課題があった。

一方で、パラジウムなどの遷移金属触媒によるgem-ジフルオロシクロプロパンの開環型置換反応が近年多く研究されている[3]。この置換反応では、まずgem-ジフルオロシクロプロパン1のC–C結合がパラジウムに酸化的付加することでパラダシクロブタン2を形成する。その後、β-フッ素脱離によりアリルパラジウム3が生成し、これの求核置換反応を経てフルオロアルケン4が得られる(図1C)。今回、華東師範大学のLiu教授らは、1の開環型置換反応で求核剤にアジリジン5を用いれば、1が炭素官能基化剤兼フッ素化剤として作用し、5のカルボフッ素化によってβ-フルオロアミン7が合成できると考えた(図1D)。すなわち、アリルパラジウム3にアジリジン5が反応して生じたアンモニウム中間体6に対し、切断したフッ素を“再利用”して開環できれば、高原子効率のβ-フルオロアミン合成法になると考えた。

図1. (A) β-フルオロアミンをもつMK-0731 (B) アジリジンの開環反応 (C) gem-ジフルオロシクロプロパンの開環反応 (D) 本研究

 

“Palladium-Catalyzed Fluorinative Bifunctionalization of Aziridines and Azetidines with gem-Difluorocyclopropanes”

Li, D.; Shen, C.; Si, Z.; Liu, L. Angew. Chem., Int. Ed. 2023, 62, e202310283.

DOI: 10.1002/anie.202310283

 

論文著者の紹介

研究者:Lu Liu (刘路) (研究者情報)

研究者の経歴:

2001                                                    B.S., East China Normal University, China (Prof. Ye Liu)
2001–2005                                       Teacher, Sichuan Leshan No.2 Middle School, China
2005–2010                                       Ph.D., East China Normal University, China (Prof. Junliang Zhang)
2010–2013                                       Postdoc, Miami University, USA (Prof. Hong Wang)
2013–2016                                       Associate Professor, East China Normal University, China
2016–                                                  Full Professor, East China Normal University, China

研究内容:ジアゾ化合物を用いたC–H官能基化、キラルホスフィン触媒の開発と応用

 

論文の概要

著者らはトルエン中Pd2(dba)3およびtBu-XPhos存在下、gem-ジフルオロシクロプロパン1とアジリジン5を120 °Cで反応させることで、β-フルオロアミン7が得られることを見いだした(図2A)。また、7のアルケンに関しては、Z体が選択的に得られる。この反応ではアジリジンにシクロペンタン(n = 1)、シクロヘキサン(n = 2)、シクロヘプタン(n = 3)が縮環した化合物5が適用でき、対応するβ-フルオロアミン7a7cを与えた。また、インドリルやベンゾフリル基をもつ1も反応し、7dおよび7eを良好な収率で与えた。なお、本反応ではアゼチジンも反応でき、対応するγ-フルオロアミンが得られる (論文参照)。

推定反応機構に関しては、図1C, Dに示したように、まずgem-ジフルオロシクロプロパン1の酸化的付加と続くβ-フッ素脱離によってアリルパラジウム3が生成する。その後、アジリジン5が付加しアンモニウム中間体INT2となる。これ以降の反応機構で、パラジウムに配位したフッ化物イオンの配位子移動(path I)と、金属から解離したフッ化物イオンがSN2型でフッ素化する経路 (path II)の二つが考えられる (図2B)。DFT計算の結果、それぞれの経路の活性化エネルギー差(⊿⊿G)を比較すると、path Iが6.7 kcal/mol有利であることがわかった。

図2. (A) 基質適用範囲 (B) 推定反応機構とエネルギー計算値 (kcal/mol)

以上、著者らはgem-ジフルオロシクロプロパンを用いたアジリジンの二官能基化によるβ-フルオロアミンの合成法を開発した。2つの環を開いてカルボフッ素化する新規形式の反応である。

参考文献

  1. (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Fluorine in Medical Chemistry. Chem. Soc. Rev. 2008, 37, 320–330. DOI: 10.1039/b610213c (b) Morgenthaler, M.; Schweizer, E.; Röder, A. H.; Benini, F.; Martin, R. E.; Jaeschke, G.; Wagner, B.; Fischer, H.; Bendels, S.; Zimmerli, D.; Schneider, J.; Diederich, F.; Kansy, M.; Müller, K. Predicting and Tuning Physicochemical Properties in Lead Optimization: Amine Basicities. ChemMedChem 2007, 317, 1881–1886. DOI: 10.1002/cmdc.200700059 (c) Cox, C. D.; Coleman, P. J.; Breslin, M. J.; Whitman, D. B.; Garbaccio, R. M.; Fraley, M. E.; Buser, C. A.; Walsh, E. S.; Hamilton, K.; Schaber, M. D.; Lobell, R. B.; Tao, W.; Davide, J. P.; Diehl, R. E.; Abrams, M. T.; South, V. J.; Huber, H. E.; Torrent, M.; Prueksaritanont, T.; Li, C.; Slaughter, D. E.; Mahan, E.; Fernandez-Metzler, C.; Yan, Y.; Kuo, L. C.; Kohl, N. E.; Hartman, G. D. Kinesin Spindle Protein (KSP) Inhibitors. 9. Discovery of (2S)-4-(2,5-Difluorophenyl)-N-[(3R,4S)-3-Fluoro-1-Methylpiperidin-4-yl]-2-(Hydroxymethyl)-N-Methyl-2-Phenyl-2, 5-Dihydro-1H-Pyrrole-1-Carboxamide (MK-0731) for the Treatment of Taxane-Refractory Cancer. J. Med. Chem. 2008, 51, 4239–4252. DOI: 10.1021/jm800386y
  2. Fan, R. H.; Zhou, Y. G.; Zhang, W. X.; Hou, X. L.; Dai, L. X. Facile Preparation of β-Fluoro Amines by the Reaction ofAziridines with Potassium Fluoride Dihydrate in the Presence ofBu4NHSO4. J. Org. Chem. 2004, 69, 335–338. DOI: 10.1021/jo034895k
  3. (a) Xu, J.; Ahmed, E. A.; Xiao, B.; Lu, Q. Q.; Wang, Y. L.; Yu, C. G.; Fu, Y. Pd-Catalyzed Regioselective Activation of gem-Difluorinated Cyclopropanes: A Highly Efficient Approach to 2-Fluorinated Allylic Scaffolds. Angew. Chem., Int. Ed. 2015, 54, 8231–8235. DOI: 10.1002/anie.201502308 (b) Lv, L.; Qian, H.; Li, Z. Catalytic Diversification of gem-Difluorocyclopropanes: Recent Advances and Challenges. ChemCatChem 2022, 14, e202200890. DOI: 10.1002/cctc.202200890 (c) Zhu, Y.; Zeng, Y.; Jiang, Z. T.; Xia, Y. Recent Advances in Transition-Metal-Catalyzed Cross-Coupling Reactions of gem-Difluorinated Cyclopropanes. Synlett 2023, 34, 1–13. DOI: 10.1055/a-1912-3059
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 脱芳香化反応を利用したヒンクデンチンAの不斉全合成
  2. 自己会合・解離機構に基づく蛍光応答性プローブを用いたエクソソーム…
  3. 書物から学ぶ有機化学4
  4. ボリルヘック反応の開発
  5. DOWとはどんな会社?-1
  6. 薬剤師国家試験にチャレンジ!【有機化学編その2】
  7. 有機合成化学協会誌2018年12月号:シアリダーゼ・Brook転…
  8. シンガポールへ行ってきた:NTUとNUS化学科訪問

注目情報

ピックアップ記事

  1. リチャード・シュロック Richard R. Schrock
  2. 塩野義 抗インフルエンザ薬製造・販売の承認を取得
  3. ルボトム酸化 Rubottom Oxidation
  4. “follow”は便利!
  5. 荷電π電子系が発現するジラジカル性をイオンペア形成によって制御
  6. カルボニルトリス(トリフェニルホスフィン)ロジウム(I)ヒドリド:Carbonyltris(triphenylphosphine)rhodium(I) Hydride
  7. 国際化学オリンピックで今年も好成績!
  8. ヨアヒム・フランク Joachim Frank
  9. チャート式実験器具選択ガイド:洗浄ブラシ・攪拌子編
  10. 光分解性シアニン色素をADCのリンカーに組み込む

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2023年12月
 123
45678910
11121314151617
18192021222324
25262728293031

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP