[スポンサーリンク]

化学者のつぶやき

ボリル化剤を無駄なく使えるsp3C–H結合ボリル化

[スポンサーリンク]

不活性なアルケンの効率的なsp3C–Hボリル化反応が開発された。鍵はジピリジルアリールメタン配位子を用いたことであり、neat条件下、またシクロヘキサン溶媒中5当量に基質を減らしても反応が進行する。

Ir触媒による不活性アルカンのsp3C–H結合ボリル化

C–Hボリル化はC–H結合を様々な官能基へ導けるボリル基に変換できる強力な手法である[1]。急速に進展しているこの分野において、sp3C–Hボリル化は未だ挑戦的な課題である。

Ir触媒を用いることでベンジル位やシクロプロパン、配向基(DG)を有するアルカンの効率的なsp3C–Hボリル化は達成されてきたが、単純アルカンなど不活性なsp3C–Hボリル化は未だ課題が多い(図1A)[2]

最たる課題は、アルカンを溶媒量要する点とジボロンの転化率の低さである。例えば、芳香族C–Hボリル化において高い触媒活性をもつことが知られるIr/Me4phen (Me4phen: 3,4,7,8-テトラメチルフェナントロリン)を用いて溶媒量のn-オクタンとB2pin2を反応させた場合、収率88%でボリル化生成物が得られる(図1B)[3a]。しかし、n-オクタンを4当量とすると収率は17%にとどまる[2e]

さらに、溶媒量のオクタンを用いた際の収率88%は一分子のB2pin2に対する収率であり、収率をホウ素原子基準で換算すると改善の余地は明白となる。これらB2pin2を用いるC–Hボリル化では、反応後にHBpinを生成するが、このHBpinをボリル化剤に活用できていないことがジボロンの低い転化率の原因である。現状、不活性アルカン(溶媒量)のC–Hボリル化において、Hartwigらが報告したCp*Rh触媒のみが高い転化率でB2pin2を変換できている(収率176%; B2pin2一分子を基準に換算)。

今回、米国Vanderbilt大学のSchleyらは、ジピリジルアリールメタン配位子(L1)をもつIr触媒が不活性アルカンのsp3C–Hボリル化において高い活性をもつことを明らかにした。本触媒を用いることで高い転化率でB2pin2を反応させることができる。また、シクロヘキサンを溶媒に用い、基質のアルカンを5当量まで減らしても本反応は進行する。

図 1. ジボロンを用いたC–H結合ボリル化反応 (A) 従来の反応の課題、(B) n-オクタンのボリル化

 

“Iridium-Catalyzed sp3 CH Borylation in Hydrocarbon Solvent Enabled by 2,2-Dipyridylarylmethane Ligands”

Jones, M. R.; Fast, C. D.; Schley, N. D. J. Am. Chem. Soc. 2020, 142, 6488–6492.

DOI: 10.1021/jacs.0c00524

論文著者の紹介


研究者:Nathan D. Schley

研究者の経歴:
2007 B.S., University of California Davis, USA (Prof. Philip P. Power)
2007–2012 Ph.D., Yale University, USA (Prof. Robert H. Crabtree)
2012–2015 NIH Postdoctoral Fellow, California Institute of Technology, USA (Prof. Gregory C. Fu)
2015–present Assistant Professor, Vanderbilt University, USA

研究内容:不活性な分子の活性化、遷移金属触媒によるC–H結合変換反応の開発

論文の概要

著者らは、[Ir(cod)(OMe)]2を触媒とし、溶媒量のn-オクタン(1a)とB2pin2を120 °Cで24時間反応させる条件のもと、ジピリジルメタン配位子を種々検討した(図2A)。

その結果、ジピリジルアリールメタン骨格が良い結果を与え、中でもアリール基上に一つフッ素原子をもつL1が高い活性をもつことを見いだした。彼らはこの配位子がもつアリール基のオルト位炭素もイリジウムに配位することでk3配位をとっていると考えた。このk3配位様式は、アルカンsp3C–Hボリル化で高活性なCp*Rh触媒がもつCp*のような“面型の配位様式”と類似するため高い活性を示したと考察している。しかし、このような配位様式の類似性と高い触媒活性との相関は未だ不明である。L1を用いて種々の金属触媒を検討したところ、[Rh(cod)OMe]2は低収率であった。(Mes)Ir(Bpin)3が最適であり、この場合触媒量を1 mol%まで減らしても反応が定量的に進行することがわかった。

次に、基質適用範囲を調査した。基質を溶媒量用いた際、ジブチルエーテルやトリエチルアミンもボリル化できた(2b,2c; 図2B(i))。ブチルエチルエーテルでは、酸素b位のメチル基が選択的にボリル化された(2d)。ヘキサン酸メチルのボリル化はメチル基選択的に進行した(2e)。また、収率は低下するものの、シクロヘキサン溶媒中、5当量のアルカンを用いても反応が進行する(図2B (ii))。また、neat条件ではアミドやラクトンなど極性が高い基質のボリル化は進行しなかったが、シクロヘキサン溶媒中で反応させるとボリル化できることがわかった(2f, 2g)。

本反応はB2pin2を基準とすると、収率が100%を超えていることから、副生成物のHBpinも消費されていると考えられる。最適条件のもと、HBpinをホウ素化剤としてn-オクタンのボリル化したところ収率は37%に留まった。しかし、0.1当量のB2pin2を添加した後、0.8当量HBpinを加えたところ、収率71%で2aが生成した(図 2C)。n-オクタン、B2pin2、HBpin各反応の経時変化を11B NNRで追跡したところ、HBpinは一定時間までは増加し、その後消費されていくことが確認された。このような傾向はCp*Rh触媒系にもみられるが、詳細な機構は明らかにはなっていない。

図 2. (A) 反応条件の最適化、(B) (i) neat条件下 (ii) シクロヘキサン溶媒中での基質適用範囲、(C) B2pin2とHBpinの消費傾向

以上、Ir/ジピリジルアリールメタン触媒を用いることで、ボリル化剤を無駄なく消費できるsp3C–Hボリル化反応が達成された。今後は、反応機構の解明を通じてさらに高活性な触媒の開発が期待される。

参考文献

  1. (a) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Thermal, Catalytic, Regiospecific Functionalization of Alkanes. Science 2000, 287, 1995− DOI: 10.1126/science.287.5460.1995 (b) Goldberg, K. I.; Goldman, A. S. Large-Scale Selective Functionalization of Alkanes. Acc. Chem. Res. 2017, 50, 620–626. DOI: 10.1021/acs.accounts.6b00621 (c) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. C–H Activation for the Construction of C–B Bonds. Chem. Rev. 2010, 110, 890–931. DOI: 10.1021/cr900206p
  2. (a) Larsen, M. A.; Wilson, C. V.; Hartwig, J. F. Iridium-Catalyzed Borylation of Primary Benzylic C–H Bonds without a Directing Group: Scope, Mechanism, and Origins of Selectivity. J. Am. Chem. Soc. 2015, 137, 8633–8643. DOI: 10.1021/jacs.5b04899 (b) Cho, S. H.; Hartwig, J. F. Iridium–Catalyzed Borylation of Secondary Benzylic C–H Bonds Directed by a Hydrosilane. J. Am. Chem. Soc. 2013, 135, 8157–8160. DOI: 10.1021/ja403462b(c) Liskey, C. W.; Hartwig, J. F. Iridium-Catalyzed C–H Borylation of Cyclopropanes. J. Am. Chem. Soc. 2013, 135, 3375–3378. DOI: 10.1021/ja400103p(d) Shi, Y.; Gao, Q.; Xu, S. Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Enantioselective C(sp3)−H Borylation of Cyclopropanes. J. Am. Chem. Soc. 2019, 141, 10599−10604. DOI: 10.1021/jacs.9b04549 (e) Ohmura, T.; Torigoe, T.; Suginome, M. Functionalization of Tetraorganosilanes and Permethyloligosilanes at a Methyl Group on Silicon via Iridium-Catalyzed C(sp3)–H Borylation. Organometallics 2013, 32, 6170−6173. DOI: 10.1021/om400900z (f) Ohmura, T.; Torigoe, T.; Suginome, M. Catalytic Functionalization of Methyl Group on Silicon: Iridium-Catalyzed C(sp3)–H Borylation of Methylchlorosilanes. J. Am. Chem. Soc. 2012, 134, 17416–17419. DOI: 10.1021/ja307956w (g) Yamamoto, T.; Ishibashi, A.; Suginome, M. Boryl-Directed, Ir-Catalyzed C(sp3)−H Borylation of Alkylboronic Acids Leading to Site-Selective Synthesis of Polyborylalkanes. Org. Lett. 2019, 21, 6235−6240. DOI: 10.1021/acs.orglett.9b02112 (h) Kawamorita, S.; Murakami, R.; Iwai, T.; Sawamura, M. Synthesis of Primary and Secondary Alkylboronates through Site-Selective C(sp3)–H Activation with Silica-Supported Monophosphine–Ir Catalysts. J. Am. Chem. Soc. 2013, 135, 2947–2950. DOI: 10.1021/ja3126239 (i) Mita, T.; Ikeda, Y.; Michigamia, K.; Sato, Y. Iridium-Catalyzed Triple C(sp3)–H Borylations: Construction of Triborylated sp3–Carbon Centers. Chem. Commun. 2013, 49, 5601–5603. DOI: 10.1039/c3cc42675k (j) Reyes, R. L.; Iwai, T.; Maeda, S.; Sawamura, M. Iridium-Catalyzed Asymmetric Borylation of Unactivated Methylene C(sp3)−H Bonds. J. Am. Chem. Soc. 2019, 141, 6817−6821. DOI: 10.1021/jacs.9b01952
  3. (a)Liskey, C. W.; Hartwig, J. F. Iridium-Catalyzed Borylation of Secondary C−H Bonds in Cyclic Ethers. J. Am. Chem. Soc. 2012, 134, 12422−12425. DOI: 10.1021/ja305596v (b) Li, Q.; Liskey, C. W.; Hartwig, J. F. Regioselective Borylation of the C−H Bonds in Alkylamines and Alkyl Ethers. Observation and Origin of High Reactivity of Primary C−H Bonds Beta to Nitrogen and Oxygen. J. Am. Chem. Soc. 2014, 136, 8755−8765. DOI: 10.1021/ja503676d
  4. Similar reports to see; (a) Oeschger, R.; Su, B.; Yu, I.; Ehinger, C.; Romero, E.; He, S.; Hartwig, J. Diverse Functionalization of Strong Alkyl C–H Bonds by Undirected Borylation. Science 2020, 368, 736–741. DOI: 1126/science.aba6146 (b) Miyamura, S.; Araki, M.; Suzuki, T.; Yamaguchi, J.; Itami, K. Stereodivergent Synthesis of Arylcyclopropylamines by Sequential C–H Borylation and Suzuki–Miyaura Coupling. Angew. Chem., Int. Ed. 2015, 54, 846–851. DOI: 10.1002/anie.201409186

関連書籍

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 研究助成金&海外留学補助金募集:公益財団法人アステラス…
  2. 第17回ケムステVシンポ『未来を拓く多彩な色素材料』を開催します…
  3. 未来の科学者を育てる政策~スーパーサイエンスハイスクール(SSH…
  4. 二酸化塩素と光でプラスチック表面を機能化
  5. マイクロ波を用いた革新的製造プロセスと電材領域への事業展開 (ナ…
  6. DNAが絡まないためのループ
  7. アメリカの研究室はこう違う!研究室内の役割分担と運営の仕組み
  8. ケムステのライターになって良かったこと

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. プロペランの真ん中
  2. ミドリムシが燃料を作る!? 石油由来の軽油を100%代替可能な次世代バイオディーゼル燃料が完成
  3. エイモス・B・スミス III Amos B. Smith III
  4. “かぼちゃ分子”内で分子内Diels–Alder反応
  5. 森田浩介 Kosuke Morita
  6. 分子構造を 3D で観察しよう (1)
  7. 染色なしで細胞を観察 阪大ベンチャーが新顕微鏡開発
  8. 分子運動を世界最高速ムービーで捉える!
  9. 遷移金属の不斉触媒作用を強化するキラルカウンターイオン法
  10. 広瀬すずさんがTikTok動画に初挑戦!「#AGCチャレンジ」を開始

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

国内最大級の研究者向けDeepTech Company Creation Program「BRAVE FRONTIER」 2022年度の受付開始 (7/15 〆切)

Beyond Next Ventures株式会社(本社:東京都中央区、代表取締役社⻑:伊藤毅、以下「…

イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発

第394回のスポットライトリサーチは、東京農工大学 大学院工学府 応用化学専攻 森研究室の神野 峻輝…

マテリアルズ・インフォマティクスで用いられる統計[超入門]-研究者が0から始めるデータの見方・考え方-

開催日:2022/07/06 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP