[スポンサーリンク]

化学者のつぶやき

ボリル化剤を無駄なく使えるsp3C–H結合ボリル化

[スポンサーリンク]

不活性なアルケンの効率的なsp3C–Hボリル化反応が開発された。鍵はジピリジルアリールメタン配位子を用いたことであり、neat条件下、またシクロヘキサン溶媒中5当量に基質を減らしても反応が進行する。

Ir触媒による不活性アルカンのsp3C–H結合ボリル化

C–Hボリル化はC–H結合を様々な官能基へ導けるボリル基に変換できる強力な手法である[1]。急速に進展しているこの分野において、sp3C–Hボリル化は未だ挑戦的な課題である。

Ir触媒を用いることでベンジル位やシクロプロパン、配向基(DG)を有するアルカンの効率的なsp3C–Hボリル化は達成されてきたが、単純アルカンなど不活性なsp3C–Hボリル化は未だ課題が多い(図1A)[2]

最たる課題は、アルカンを溶媒量要する点とジボロンの転化率の低さである。例えば、芳香族C–Hボリル化において高い触媒活性をもつことが知られるIr/Me4phen (Me4phen: 3,4,7,8-テトラメチルフェナントロリン)を用いて溶媒量のn-オクタンとB2pin2を反応させた場合、収率88%でボリル化生成物が得られる(図1B)[3a]。しかし、n-オクタンを4当量とすると収率は17%にとどまる[2e]

さらに、溶媒量のオクタンを用いた際の収率88%は一分子のB2pin2に対する収率であり、収率をホウ素原子基準で換算すると改善の余地は明白となる。これらB2pin2を用いるC–Hボリル化では、反応後にHBpinを生成するが、このHBpinをボリル化剤に活用できていないことがジボロンの低い転化率の原因である。現状、不活性アルカン(溶媒量)のC–Hボリル化において、Hartwigらが報告したCp*Rh触媒のみが高い転化率でB2pin2を変換できている(収率176%; B2pin2一分子を基準に換算)。

今回、米国Vanderbilt大学のSchleyらは、ジピリジルアリールメタン配位子(L1)をもつIr触媒が不活性アルカンのsp3C–Hボリル化において高い活性をもつことを明らかにした。本触媒を用いることで高い転化率でB2pin2を反応させることができる。また、シクロヘキサンを溶媒に用い、基質のアルカンを5当量まで減らしても本反応は進行する。

図 1. ジボロンを用いたC–H結合ボリル化反応 (A) 従来の反応の課題、(B) n-オクタンのボリル化

 

“Iridium-Catalyzed sp3 CH Borylation in Hydrocarbon Solvent Enabled by 2,2-Dipyridylarylmethane Ligands”

Jones, M. R.; Fast, C. D.; Schley, N. D. J. Am. Chem. Soc. 2020, 142, 6488–6492.

DOI: 10.1021/jacs.0c00524

論文著者の紹介


研究者:Nathan D. Schley

研究者の経歴:
2007 B.S., University of California Davis, USA (Prof. Philip P. Power)
2007–2012 Ph.D., Yale University, USA (Prof. Robert H. Crabtree)
2012–2015 NIH Postdoctoral Fellow, California Institute of Technology, USA (Prof. Gregory C. Fu)
2015–present Assistant Professor, Vanderbilt University, USA

研究内容:不活性な分子の活性化、遷移金属触媒によるC–H結合変換反応の開発

論文の概要

著者らは、[Ir(cod)(OMe)]2を触媒とし、溶媒量のn-オクタン(1a)とB2pin2を120 °Cで24時間反応させる条件のもと、ジピリジルメタン配位子を種々検討した(図2A)。

その結果、ジピリジルアリールメタン骨格が良い結果を与え、中でもアリール基上に一つフッ素原子をもつL1が高い活性をもつことを見いだした。彼らはこの配位子がもつアリール基のオルト位炭素もイリジウムに配位することでk3配位をとっていると考えた。このk3配位様式は、アルカンsp3C–Hボリル化で高活性なCp*Rh触媒がもつCp*のような“面型の配位様式”と類似するため高い活性を示したと考察している。しかし、このような配位様式の類似性と高い触媒活性との相関は未だ不明である。L1を用いて種々の金属触媒を検討したところ、[Rh(cod)OMe]2は低収率であった。(Mes)Ir(Bpin)3が最適であり、この場合触媒量を1 mol%まで減らしても反応が定量的に進行することがわかった。

次に、基質適用範囲を調査した。基質を溶媒量用いた際、ジブチルエーテルやトリエチルアミンもボリル化できた(2b,2c; 図2B(i))。ブチルエチルエーテルでは、酸素b位のメチル基が選択的にボリル化された(2d)。ヘキサン酸メチルのボリル化はメチル基選択的に進行した(2e)。また、収率は低下するものの、シクロヘキサン溶媒中、5当量のアルカンを用いても反応が進行する(図2B (ii))。また、neat条件ではアミドやラクトンなど極性が高い基質のボリル化は進行しなかったが、シクロヘキサン溶媒中で反応させるとボリル化できることがわかった(2f, 2g)。

本反応はB2pin2を基準とすると、収率が100%を超えていることから、副生成物のHBpinも消費されていると考えられる。最適条件のもと、HBpinをホウ素化剤としてn-オクタンのボリル化したところ収率は37%に留まった。しかし、0.1当量のB2pin2を添加した後、0.8当量HBpinを加えたところ、収率71%で2aが生成した(図 2C)。n-オクタン、B2pin2、HBpin各反応の経時変化を11B NNRで追跡したところ、HBpinは一定時間までは増加し、その後消費されていくことが確認された。このような傾向はCp*Rh触媒系にもみられるが、詳細な機構は明らかにはなっていない。

図 2. (A) 反応条件の最適化、(B) (i) neat条件下 (ii) シクロヘキサン溶媒中での基質適用範囲、(C) B2pin2とHBpinの消費傾向

以上、Ir/ジピリジルアリールメタン触媒を用いることで、ボリル化剤を無駄なく消費できるsp3C–Hボリル化反応が達成された。今後は、反応機構の解明を通じてさらに高活性な触媒の開発が期待される。

参考文献

  1. (a) Chen, H.; Schlecht, S.; Semple, T. C.; Hartwig, J. F. Thermal, Catalytic, Regiospecific Functionalization of Alkanes. Science 2000, 287, 1995− DOI: 10.1126/science.287.5460.1995 (b) Goldberg, K. I.; Goldman, A. S. Large-Scale Selective Functionalization of Alkanes. Acc. Chem. Res. 2017, 50, 620–626. DOI: 10.1021/acs.accounts.6b00621 (c) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. C–H Activation for the Construction of C–B Bonds. Chem. Rev. 2010, 110, 890–931. DOI: 10.1021/cr900206p
  2. (a) Larsen, M. A.; Wilson, C. V.; Hartwig, J. F. Iridium-Catalyzed Borylation of Primary Benzylic C–H Bonds without a Directing Group: Scope, Mechanism, and Origins of Selectivity. J. Am. Chem. Soc. 2015, 137, 8633–8643. DOI: 10.1021/jacs.5b04899 (b) Cho, S. H.; Hartwig, J. F. Iridium–Catalyzed Borylation of Secondary Benzylic C–H Bonds Directed by a Hydrosilane. J. Am. Chem. Soc. 2013, 135, 8157–8160. DOI: 10.1021/ja403462b(c) Liskey, C. W.; Hartwig, J. F. Iridium-Catalyzed C–H Borylation of Cyclopropanes. J. Am. Chem. Soc. 2013, 135, 3375–3378. DOI: 10.1021/ja400103p(d) Shi, Y.; Gao, Q.; Xu, S. Chiral Bidentate Boryl Ligand Enabled Iridium-Catalyzed Enantioselective C(sp3)−H Borylation of Cyclopropanes. J. Am. Chem. Soc. 2019, 141, 10599−10604. DOI: 10.1021/jacs.9b04549 (e) Ohmura, T.; Torigoe, T.; Suginome, M. Functionalization of Tetraorganosilanes and Permethyloligosilanes at a Methyl Group on Silicon via Iridium-Catalyzed C(sp3)–H Borylation. Organometallics 2013, 32, 6170−6173. DOI: 10.1021/om400900z (f) Ohmura, T.; Torigoe, T.; Suginome, M. Catalytic Functionalization of Methyl Group on Silicon: Iridium-Catalyzed C(sp3)–H Borylation of Methylchlorosilanes. J. Am. Chem. Soc. 2012, 134, 17416–17419. DOI: 10.1021/ja307956w (g) Yamamoto, T.; Ishibashi, A.; Suginome, M. Boryl-Directed, Ir-Catalyzed C(sp3)−H Borylation of Alkylboronic Acids Leading to Site-Selective Synthesis of Polyborylalkanes. Org. Lett. 2019, 21, 6235−6240. DOI: 10.1021/acs.orglett.9b02112 (h) Kawamorita, S.; Murakami, R.; Iwai, T.; Sawamura, M. Synthesis of Primary and Secondary Alkylboronates through Site-Selective C(sp3)–H Activation with Silica-Supported Monophosphine–Ir Catalysts. J. Am. Chem. Soc. 2013, 135, 2947–2950. DOI: 10.1021/ja3126239 (i) Mita, T.; Ikeda, Y.; Michigamia, K.; Sato, Y. Iridium-Catalyzed Triple C(sp3)–H Borylations: Construction of Triborylated sp3–Carbon Centers. Chem. Commun. 2013, 49, 5601–5603. DOI: 10.1039/c3cc42675k (j) Reyes, R. L.; Iwai, T.; Maeda, S.; Sawamura, M. Iridium-Catalyzed Asymmetric Borylation of Unactivated Methylene C(sp3)−H Bonds. J. Am. Chem. Soc. 2019, 141, 6817−6821. DOI: 10.1021/jacs.9b01952
  3. (a)Liskey, C. W.; Hartwig, J. F. Iridium-Catalyzed Borylation of Secondary C−H Bonds in Cyclic Ethers. J. Am. Chem. Soc. 2012, 134, 12422−12425. DOI: 10.1021/ja305596v (b) Li, Q.; Liskey, C. W.; Hartwig, J. F. Regioselective Borylation of the C−H Bonds in Alkylamines and Alkyl Ethers. Observation and Origin of High Reactivity of Primary C−H Bonds Beta to Nitrogen and Oxygen. J. Am. Chem. Soc. 2014, 136, 8755−8765. DOI: 10.1021/ja503676d
  4. Similar reports to see; (a) Oeschger, R.; Su, B.; Yu, I.; Ehinger, C.; Romero, E.; He, S.; Hartwig, J. Diverse Functionalization of Strong Alkyl C–H Bonds by Undirected Borylation. Science 2020, 368, 736–741. DOI: 1126/science.aba6146 (b) Miyamura, S.; Araki, M.; Suzuki, T.; Yamaguchi, J.; Itami, K. Stereodivergent Synthesis of Arylcyclopropylamines by Sequential C–H Borylation and Suzuki–Miyaura Coupling. Angew. Chem., Int. Ed. 2015, 54, 846–851. DOI: 10.1002/anie.201409186

関連書籍

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 触媒討論会に行ってきました
  2. オペレーションはイノベーションの夢を見るか? その3+まとめ
  3. 【書籍】イシューからはじめよ~知的生産のシンプルな本質~
  4. 周期表の歴史を振り返る【周期表生誕 150 周年特別企画】
  5. 有機合成化学協会誌2018年12月号:シアリダーゼ・Brook転…
  6. 学生・ポスドクの方、ちょっとアメリカ旅行しませんか?:SciFi…
  7. 細胞の中を旅する小分子|第三回(最終回)
  8. 病理学的知見にもとづく化学物質の有害性評価

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 林・ヨルゲンセン触媒 Hayashi-Jørgensen Catalyst
  2. 結晶データの登録・検索サービス(Access Structures&Deposit Structures)が公開
  3. 1,3-ビス(2,4,6-トリメチルフェニル)イミダゾリニウムクロリド:1,3-Bis(2,4,6-trimethylphenyl)imidazolinium Chloride
  4. 100年前のノーベル化学賞ーフリッツ・ハーバーー
  5. アニオン重合 Anionic Polymerization
  6. 化学でもフェルミ推定
  7. マンチニールの不思議な話 ~ウィリアム・ダンピアの記録から~
  8. ビス(ヘキサフルオロアセチルアセトナト)銅(II)水和物 : Bis(hexafluoroacetylacetonato)copper(II) Hydrate
  9. 炭素文明論「元素の王者」が歴史を動かす
  10. オンライン講演会に参加してみた~学部生の挑戦記録~

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

注目情報

最新記事

Excelでできる材料開発のためのデータ解析[超入門]-統計の基礎や機械学習との違いを解説-

 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影響を受け、従来の経験と勘によ…

超原子価ヨウ素反応剤を用いたジアミド類の4-イミダゾリジノン誘導化

第468回のスポットライトリサーチは、岐阜薬科大学  合成薬品製造学研究室(伊藤研究室)に所属されて…

研究室でDIY!ELSD検出器を複数のLCシステムで使えるようにした話

先日のBiotage Selekt + ELSDの記事でちらっと紹介した、ELS…

第37回ケムステVシンポ「抗体修飾法の最前線 〜ADC製造の基盤技術〜」を開催します!

修論・卒論・博士論文で大忙しの2,3月ですが、皆さんいかがお過ごしでしょうか。まとめ作業とデスク…

有機合成化学協会誌2023年1月号:[1,3]-アルコキシ転位・クロロシラン・インシリコ技術・マイトトキシン・MOF

有機合成化学協会が発行する有機合成化学協会誌、2023年1月号がオンライン公開されました。す…

飲む痔の薬のはなし1 ブロメラインとビタミンE

Tshozoです。あれ(発端記事・その後の記事)からいろいろありました。一進一退とはいえ、咀…

深紫外光源の効率を高める新たな透明電極材料

第467回のスポットライトリサーチは、東京都立大学大学院 理学研究科 廣瀬研究室の長島 陽(ながしま…

化学メーカー発の半導体技術が受賞

積水化学工業株式会社の高機能プラスチックスカンパニー開発研究所エレクトロニクス材料開発センターが開発…

ラジカル種の反応性を精密に制御する-プベルリンCの世界初全合成

第466回のスポットライトリサーチは、東京大学大学院薬学系研究科 天然物合成化学教室 (井上研究室)…

Biotage Selekt+ELSD【実機レビュー】

最近では、有機合成研究室には1台以上はあるのではないかという自動フラッシュ精製装置ですが、その中でも…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP