[スポンサーリンク]

化学者のつぶやき

分子を見分けるプラスチック「分子刷り込み高分子」(基礎編)

[スポンサーリンク]

高精度に特定の分子を見分ける機能、すなわち分子認識ができる物質は、さまざまな応用が期待できます。

究極の認識能を誇る物質は、私たちの体内にある抗体です。しかし価格、製造時間、不安定性、量的供給の難しさなどから、何でもかんでもには応用できません。

小さな分子~超分子ぐらいのサイズで精密認識ができればいいのですが、実際にこれをやろうとすると、分子構造がどんどん複雑になってしまいます。こうなると、性能に比して合成コストが見あわなくなり、やはり実用性の面で難があります。

何とかして簡単に、しかも高精度に分子認識できるような物質はつくれないのだろうか・・・?

そういうニーズに応える一つが、分子刷り込み高分子 (Molecularly Imprinted Polymer, MIP)と呼ばれる材料群です。

今回はこのMIPについて、最近の総説[1]をもとにご紹介します。

MIPの基本原理

まずは基本原理と合成法から。MIPの作り方は至極簡単です。

画像引用:Wikipedia

画像引用:Wikipedia

①鋳型(template)と非共有結合を介して相互作用するモノマーを用意する。
②鋳型の共存下に重合させる。
③鋳型を取り除き、それと相補的なcavity形状を有する高分子ホスト(=MIP)を作る。

要するに「認識したい分子を覆うようにポリマーを合成してから、その分子を取り除いてやる」だけです。出来た穴ボコは、もとの分子にぴったりハマる形になっているだろう・・・というのがアイデアの根っこにあります。

製造価格や安定性の面で抗体よりも優れており、同程度の認識能を持つ小分子/超分子に比べても、はるかに合成労力が少なく済むのがメリットです。

合成法

もっとも古典的な製造法は上で述べた方法、いわゆるBulk Imprintingと呼ばれるやり方です。

その後、合成法はさまざまに発展を遂げ、大サイズの鋳型に向くSurface Imprinting、鋳型表面が流動的なものに向くSubstructure Imprintingなどが後に報告されています。

画像は文献[1]より引用

画像は文献[1]より引用

いずれの方法でも、鋳型の除去がしばしば大問題となります。特に柔らかで複雑な鋳型(バイオ絡みのものが多い)を用いるケースに、それが顕著となります。除去処理に敏感なポリマーも多く、鋳型の分解物の残りカスが除去しきれない場合、認識能が下がってしまうこともあります。そのため、これをいかに上手く行うかは現在でも重要課題の一つとされています。

また、性能の良いMIPの創製には、ポリマー素材の選定がもっとも重要とされています。

・モノマーが鋳型と非共有結合相互作用できる適切な官能基を持っていること
・モノマー重合過程で鋳型自体と反応しない
・鋳型を取り除いても結合サイトが保持される程度の強度を持つ

などの特性がMIP用素材には求められます。応用によっては毒性の有無粘度・成型しやすさなども重要なファクターとなります。

幅広い応用可能性

MIPはさまざまな応用(分析・分離・触媒・創薬など)が試みられていますが、「解決したい問題が何であるか」によって、つくるべき材料はもちろん変わってきます。

比較的小さい分子(低分子医薬など)を鋳型としたMIPは、かねてよりよく研究されてきています。

その一方で、大きなサイズの鋳型を用いてMIPを作り出すのは、性能がまちまちなものしか作れず、大変難しい課題とされてきました。しかし近年ではポリマー合成法の進展も手伝って、タンパク質、ウィルス、さらには細胞すらも認識標的にできるMIPが登場しています。

この技術発展を受ける形で、最近では高付加価値が見込める「医学/生物学領域への応用」を目指した研究が多く試みられているようです。

 

そのような具体例については、別記事でご紹介したいと思います。

関連論文

  1.  “Bioapplications for Molecularly Imprinted Polymers”, Schrhagl, R. Anal. Chem. 2014, 86, 250. DOI: 10.1021/ac401251j

関連リンク

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 食中毒と衛生管理の重要性ーChemical Times特集より
  2. ”がんのメカニズムに迫る” 細胞増殖因子とシグナル学術セミナー …
  3. エステルからエステルをつくる
  4. 元素手帳2022
  5. Bayer Material Scienceの分離独立が語るもの…
  6. ウッドワード・ホフマン則を打ち破る『力学的活性化』
  7. 「脱芳香族的二重官能基修飾化反応の研究」ーイリノイ大学David…
  8. 有機合成化学協会誌2020年3月号:電子欠損性ホウ素化合物・不斉…

注目情報

ピックアップ記事

  1. 非天然アミノ酸触媒による立体選択的環形成反応
  2. 化学研究ライフハック:縦置きマルチディスプレイに挑戦!
  3. 理系で研究職以外に進んだ人に話を聞いてみた
  4. 有機合成化学協会誌2017年5月号 特集:キラリティ研究の最前線
  5. ヘリウムガスのはなし
  6. 第39回「発光ナノ粒子を用いる生物イメージング」Frank van Veggel教授
  7. 超原子価臭素試薬を用いた脂肪族C-Hアミノ化反応
  8. グリーンイノベーション基金事業でCO2などの燃料化と利用を推進―合成燃料や持続可能な航空燃料などの技術開発に着手―
  9. 研究室クラウド設立のススメ(導入編)
  10. 第14回 有機合成「力」でケミカルバイオロジーへ斬り込む - Joe Sweeney教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

亜鉛–ヒドリド種を持つ金属–有機構造体による高温での二酸化炭素回収

亜鉛–ヒドリド部位を持つ金属–有機構造体 (metal–organic frameworks; MO…

求人は増えているのになぜ?「転職先が決まらない人」に共通する行動パターンとは?

転職市場が活発に動いている中でも、なかなか転職先が決まらない人がいるのはなぜでしょう…

三脚型トリプチセン超分子足場を用いて一重項分裂を促進する配置へとペンタセンクロモフォアを集合化させることに成功

第634回のスポットライトリサーチは、 東京科学大学 物質理工学院(福島研究室)博士課程後期3年の福…

2024年の化学企業グローバル・トップ50

グローバル・トップ50をケムステニュースで取り上げるのは定番になっておりましたが、今年は忙しくて発表…

早稲田大学各務記念材料技術研究所「材研オープンセミナー」

早稲田大学各務記念材料技術研究所(以下材研)では、12月13日(金)に材研オープンセミナーを実施しま…

カーボンナノベルトを結晶溶媒で一直線に整列! – 超分子2層カーボンナノチューブの新しいボトムアップ合成へ –

第633回のスポットライトリサーチは、名古屋大学理学研究科有機化学グループで行われた成果で、井本 大…

第67回「1分子レベルの酵素活性を網羅的に解析し,疾患と関わる異常を見つける」小松徹 准教授

第67回目の研究者インタビューです! 今回は第49回ケムステVシンポ「触媒との掛け算で拡張・多様化す…

四置換アルケンのエナンチオ選択的ヒドロホウ素化反応

四置換アルケンの位置選択的かつ立体選択的な触媒的ヒドロホウ素化が報告された。電子豊富なロジウム錯体と…

【12月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:有機金属化合物 オルガチックスのエステル化、エステル交換触媒としての利用

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

河村奈緒子 Naoko Komura

河村 奈緒子(こうむら なおこ, 19xx年xx月xx日-)は、日本の有機化学者である。専門は糖鎖合…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP