[スポンサーリンク]

化学者のつぶやき

分子を見分けるプラスチック「分子刷り込み高分子」(基礎編)

高精度に特定の分子を見分ける機能、すなわち分子認識ができる物質は、さまざまな応用が期待できます。

究極の認識能を誇る物質は、私たちの体内にある抗体です。しかし価格、製造時間、不安定性、量的供給の難しさなどから、何でもかんでもには応用できません。

小さな分子~超分子ぐらいのサイズで精密認識ができればいいのですが、実際にこれをやろうとすると、分子構造がどんどん複雑になってしまいます。こうなると、性能に比して合成コストが見あわなくなり、やはり実用性の面で難があります。

何とかして簡単に、しかも高精度に分子認識できるような物質はつくれないのだろうか・・・?

そういうニーズに応える一つが、分子刷り込み高分子 (Molecularly Imprinted Polymer, MIP)と呼ばれる材料群です。

今回はこのMIPについて、最近の総説[1]をもとにご紹介します。

MIPの基本原理

まずは基本原理と合成法から。MIPの作り方は至極簡単です。

画像引用:Wikipedia

画像引用:Wikipedia

①鋳型(template)と非共有結合を介して相互作用するモノマーを用意する。
②鋳型の共存下に重合させる。
③鋳型を取り除き、それと相補的なcavity形状を有する高分子ホスト(=MIP)を作る。

要するに「認識したい分子を覆うようにポリマーを合成してから、その分子を取り除いてやる」だけです。出来た穴ボコは、もとの分子にぴったりハマる形になっているだろう・・・というのがアイデアの根っこにあります。

製造価格や安定性の面で抗体よりも優れており、同程度の認識能を持つ小分子/超分子に比べても、はるかに合成労力が少なく済むのがメリットです。

合成法

もっとも古典的な製造法は上で述べた方法、いわゆるBulk Imprintingと呼ばれるやり方です。

その後、合成法はさまざまに発展を遂げ、大サイズの鋳型に向くSurface Imprinting、鋳型表面が流動的なものに向くSubstructure Imprintingなどが後に報告されています。

画像は文献[1]より引用

画像は文献[1]より引用

いずれの方法でも、鋳型の除去がしばしば大問題となります。特に柔らかで複雑な鋳型(バイオ絡みのものが多い)を用いるケースに、それが顕著となります。除去処理に敏感なポリマーも多く、鋳型の分解物の残りカスが除去しきれない場合、認識能が下がってしまうこともあります。そのため、これをいかに上手く行うかは現在でも重要課題の一つとされています。

また、性能の良いMIPの創製には、ポリマー素材の選定がもっとも重要とされています。

・モノマーが鋳型と非共有結合相互作用できる適切な官能基を持っていること
・モノマー重合過程で鋳型自体と反応しない
・鋳型を取り除いても結合サイトが保持される程度の強度を持つ

などの特性がMIP用素材には求められます。応用によっては毒性の有無粘度・成型しやすさなども重要なファクターとなります。

幅広い応用可能性

MIPはさまざまな応用(分析・分離・触媒・創薬など)が試みられていますが、「解決したい問題が何であるか」によって、つくるべき材料はもちろん変わってきます。

比較的小さい分子(低分子医薬など)を鋳型としたMIPは、かねてよりよく研究されてきています。

その一方で、大きなサイズの鋳型を用いてMIPを作り出すのは、性能がまちまちなものしか作れず、大変難しい課題とされてきました。しかし近年ではポリマー合成法の進展も手伝って、タンパク質、ウィルス、さらには細胞すらも認識標的にできるMIPが登場しています。

この技術発展を受ける形で、最近では高付加価値が見込める「医学/生物学領域への応用」を目指した研究が多く試みられているようです。

 

そのような具体例については、別記事でご紹介したいと思います。

関連論文

  1.  “Bioapplications for Molecularly Imprinted Polymers”, Schrhagl, R. Anal. Chem. 2014, 86, 250. DOI: 10.1021/ac401251j

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 高分子と高分子の反応も冷やして加速する
  2. サイエンスアゴラの魅力を聞く-「iCeMS」水町先生
  3. 第8回平田メモリアルレクチャー
  4. レビュー多くてもよくね?
  5. 人工タンパク質ナノブロックにより自己組織化ナノ構造を創る
  6. で、その研究はなんの役に立つの?
  7. 【書籍】英文ライティングの基本原則をおさらい:『The Elem…
  8. 科学を伝える-サイエンスコミュニケーターのお仕事-梅村綾子さん

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 骨粗鬆症、骨破壊止める化合物発見 理研など新薬研究へ
  2. 出発原料から学ぶ「Design and Strategy in Organic Synthesis」
  3. 銅触媒によるアニリン類からの直接的芳香族アゾ化合物生成反応
  4. 元素占いはいかが?
  5. 多置換ケトンエノラートを立体選択的につくる
  6. 岡大教授が米国化学会賞受賞
  7. 三井化学と日産化学が肥料事業を統合
  8. 大日本インキが社名変更 来年4月1日から「DIC」に
  9. 【PR】Twitter、はじめました
  10. 青色発光ダイオードの赤﨑勇氏らに京都賞

関連商品

注目情報

注目情報

最新記事

ルミノール誘導体を用いるチロシン選択的タンパク質修飾法

2015年、東京工業大学・中村浩之らは、ルミノール誘導体と鉄-ポルフィリン複合体(ヘミン)を用い、チ…

酵素触媒によるアルケンのアンチマルコフニコフ酸化

酵素は、基質と複数点で相互作用することにより、化学反応を厳密にコントロールしています。通常のフラ…

イオンの出入りを制御するキャップ付き分子容器の開発

第124回のスポットライトリサーチは、金沢大学 理工研究域物質化学系錯体化学研究分野(錯体化学・超分…

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

Chem-Station Twitter

PAGE TOP