[スポンサーリンク]

化学者のつぶやき

分子を見分けるプラスチック「分子刷り込み高分子」(基礎編)

[スポンサーリンク]

高精度に特定の分子を見分ける機能、すなわち分子認識ができる物質は、さまざまな応用が期待できます。

究極の認識能を誇る物質は、私たちの体内にある抗体です。しかし価格、製造時間、不安定性、量的供給の難しさなどから、何でもかんでもには応用できません。

小さな分子~超分子ぐらいのサイズで精密認識ができればいいのですが、実際にこれをやろうとすると、分子構造がどんどん複雑になってしまいます。こうなると、性能に比して合成コストが見あわなくなり、やはり実用性の面で難があります。

何とかして簡単に、しかも高精度に分子認識できるような物質はつくれないのだろうか・・・?

そういうニーズに応える一つが、分子刷り込み高分子 (Molecularly Imprinted Polymer, MIP)と呼ばれる材料群です。

今回はこのMIPについて、最近の総説[1]をもとにご紹介します。

MIPの基本原理

まずは基本原理と合成法から。MIPの作り方は至極簡単です。

画像引用:Wikipedia

画像引用:Wikipedia

①鋳型(template)と非共有結合を介して相互作用するモノマーを用意する。
②鋳型の共存下に重合させる。
③鋳型を取り除き、それと相補的なcavity形状を有する高分子ホスト(=MIP)を作る。

要するに「認識したい分子を覆うようにポリマーを合成してから、その分子を取り除いてやる」だけです。出来た穴ボコは、もとの分子にぴったりハマる形になっているだろう・・・というのがアイデアの根っこにあります。

製造価格や安定性の面で抗体よりも優れており、同程度の認識能を持つ小分子/超分子に比べても、はるかに合成労力が少なく済むのがメリットです。

合成法

もっとも古典的な製造法は上で述べた方法、いわゆるBulk Imprintingと呼ばれるやり方です。

その後、合成法はさまざまに発展を遂げ、大サイズの鋳型に向くSurface Imprinting、鋳型表面が流動的なものに向くSubstructure Imprintingなどが後に報告されています。

画像は文献[1]より引用

画像は文献[1]より引用

いずれの方法でも、鋳型の除去がしばしば大問題となります。特に柔らかで複雑な鋳型(バイオ絡みのものが多い)を用いるケースに、それが顕著となります。除去処理に敏感なポリマーも多く、鋳型の分解物の残りカスが除去しきれない場合、認識能が下がってしまうこともあります。そのため、これをいかに上手く行うかは現在でも重要課題の一つとされています。

また、性能の良いMIPの創製には、ポリマー素材の選定がもっとも重要とされています。

・モノマーが鋳型と非共有結合相互作用できる適切な官能基を持っていること
・モノマー重合過程で鋳型自体と反応しない
・鋳型を取り除いても結合サイトが保持される程度の強度を持つ

などの特性がMIP用素材には求められます。応用によっては毒性の有無粘度・成型しやすさなども重要なファクターとなります。

幅広い応用可能性

MIPはさまざまな応用(分析・分離・触媒・創薬など)が試みられていますが、「解決したい問題が何であるか」によって、つくるべき材料はもちろん変わってきます。

比較的小さい分子(低分子医薬など)を鋳型としたMIPは、かねてよりよく研究されてきています。

その一方で、大きなサイズの鋳型を用いてMIPを作り出すのは、性能がまちまちなものしか作れず、大変難しい課題とされてきました。しかし近年ではポリマー合成法の進展も手伝って、タンパク質、ウィルス、さらには細胞すらも認識標的にできるMIPが登場しています。

この技術発展を受ける形で、最近では高付加価値が見込める「医学/生物学領域への応用」を目指した研究が多く試みられているようです。

 

そのような具体例については、別記事でご紹介したいと思います。

関連論文

  1.  “Bioapplications for Molecularly Imprinted Polymers”, Schrhagl, R. Anal. Chem. 2014, 86, 250. DOI: 10.1021/ac401251j

関連リンク

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 二段励起型可視光レドックス触媒を用いる還元反応
  2. 第37回反応と合成の進歩シンポジウムに参加してきました。
  3. タンパク質を華麗に模倣!新規単分子クロリドチャネル
  4. 化学探偵Mr.キュリー6
  5. 2017年始めに100年前を振り返ってみた
  6. 微生物細胞に優しいバイオマス溶媒 –カルボン酸系双性イオン液体の…
  7. 第15回ケムステVシンポジウム「複合アニオン」を開催します!
  8. 計算化学:DFTって何? PartIII

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 第95回日本化学会付設展示会ケムステキャンペーン!Part I
  2. 結晶構造に基づいた酵素機能の解明ーロバスタチン生合成に関わる還元酵素LovCー
  3. EU、玩具へのフタル酸エステル類の使用禁止
  4. 製薬、3強時代に 「第一三共」きょう発足
  5. sinceの使い方
  6. 第45回BMSコンファレンス参加者募集
  7. 誰でも使えるイオンクロマトグラフ 「Eco IC」新発売:メトローム
  8. アンソニー・スペック Anthony L. Spek
  9. 芳香族フッ素化合物の新規汎用合成法
  10. 【速報】Mac OS X Lionにアップグレードしてみた

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

実験条件検討・最適化特化サービス miHubのメジャーアップデートのご紹介 -実験点検討と試行錯誤プラットフォーム-

開催日:2023/12/13 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

カルボン酸β位のC–Hをベターに臭素化できる配位子さん!

カルボン酸のb位C(sp3)–H結合を直接臭素化できるイソキノリン配位子が開発された。イソキノリンに…

【12月開催】第十四回 マツモトファインケミカル技術セミナー   有機金属化合物 オルガチックスの性状、反応性とその用途

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

保護基の使用を最小限に抑えたペプチド伸長反応の開発

第584回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

【ナード研究所】新卒採用情報(2025年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代……

書類選考は3分で決まる!面接に進める人、進めない人

人事担当者は面接に進む人、進まない人をどう判断しているのか?転職活動中の方から、…

期待度⭘!サンドイッチ化合物の新顔「シクロセン」

π共役系配位子と金属が交互に配位しながら環を形成したサンドイッチ化合物の合成が達成された。嵩高い置換…

塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

ニッケル触媒を用いたシクロヘキセンの位置および立体選択的なカルボホウ素化反応が開発された。用いる塩基…

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP