[スポンサーリンク]

化学者のつぶやき

分子を見分けるプラスチック「分子刷り込み高分子」(基礎編)

[スポンサーリンク]

高精度に特定の分子を見分ける機能、すなわち分子認識ができる物質は、さまざまな応用が期待できます。

究極の認識能を誇る物質は、私たちの体内にある抗体です。しかし価格、製造時間、不安定性、量的供給の難しさなどから、何でもかんでもには応用できません。

小さな分子~超分子ぐらいのサイズで精密認識ができればいいのですが、実際にこれをやろうとすると、分子構造がどんどん複雑になってしまいます。こうなると、性能に比して合成コストが見あわなくなり、やはり実用性の面で難があります。

何とかして簡単に、しかも高精度に分子認識できるような物質はつくれないのだろうか・・・?

そういうニーズに応える一つが、分子刷り込み高分子 (Molecularly Imprinted Polymer, MIP)と呼ばれる材料群です。

今回はこのMIPについて、最近の総説[1]をもとにご紹介します。

MIPの基本原理

まずは基本原理と合成法から。MIPの作り方は至極簡単です。

画像引用:Wikipedia

画像引用:Wikipedia

①鋳型(template)と非共有結合を介して相互作用するモノマーを用意する。
②鋳型の共存下に重合させる。
③鋳型を取り除き、それと相補的なcavity形状を有する高分子ホスト(=MIP)を作る。

要するに「認識したい分子を覆うようにポリマーを合成してから、その分子を取り除いてやる」だけです。出来た穴ボコは、もとの分子にぴったりハマる形になっているだろう・・・というのがアイデアの根っこにあります。

製造価格や安定性の面で抗体よりも優れており、同程度の認識能を持つ小分子/超分子に比べても、はるかに合成労力が少なく済むのがメリットです。

合成法

もっとも古典的な製造法は上で述べた方法、いわゆるBulk Imprintingと呼ばれるやり方です。

その後、合成法はさまざまに発展を遂げ、大サイズの鋳型に向くSurface Imprinting、鋳型表面が流動的なものに向くSubstructure Imprintingなどが後に報告されています。

画像は文献[1]より引用

画像は文献[1]より引用

いずれの方法でも、鋳型の除去がしばしば大問題となります。特に柔らかで複雑な鋳型(バイオ絡みのものが多い)を用いるケースに、それが顕著となります。除去処理に敏感なポリマーも多く、鋳型の分解物の残りカスが除去しきれない場合、認識能が下がってしまうこともあります。そのため、これをいかに上手く行うかは現在でも重要課題の一つとされています。

また、性能の良いMIPの創製には、ポリマー素材の選定がもっとも重要とされています。

・モノマーが鋳型と非共有結合相互作用できる適切な官能基を持っていること
・モノマー重合過程で鋳型自体と反応しない
・鋳型を取り除いても結合サイトが保持される程度の強度を持つ

などの特性がMIP用素材には求められます。応用によっては毒性の有無粘度・成型しやすさなども重要なファクターとなります。

幅広い応用可能性

MIPはさまざまな応用(分析・分離・触媒・創薬など)が試みられていますが、「解決したい問題が何であるか」によって、つくるべき材料はもちろん変わってきます。

比較的小さい分子(低分子医薬など)を鋳型としたMIPは、かねてよりよく研究されてきています。

その一方で、大きなサイズの鋳型を用いてMIPを作り出すのは、性能がまちまちなものしか作れず、大変難しい課題とされてきました。しかし近年ではポリマー合成法の進展も手伝って、タンパク質、ウィルス、さらには細胞すらも認識標的にできるMIPが登場しています。

この技術発展を受ける形で、最近では高付加価値が見込める「医学/生物学領域への応用」を目指した研究が多く試みられているようです。

 

そのような具体例については、別記事でご紹介したいと思います。

関連論文

  1.  “Bioapplications for Molecularly Imprinted Polymers”, Schrhagl, R. Anal. Chem. 2014, 86, 250. DOI: 10.1021/ac401251j

関連リンク

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 含窒素有機化合物の触媒合成について
  2. 究極の脱水溶媒 Super2(スーパー スクエア):関東化学
  3. 【追悼企画】不斉酸化反応のフロンティアー香月 勗
  4. カーボンナノチューブを有機色素で染めて使う新しい光触媒技術
  5. ケムステV年末ライブ2021開催報告! 〜今年の分子 and 人…
  6. 最期の病:悪液質
  7. 誤解してない? 電子の軌道は”軌道”では…
  8. ケムステスタッフ徹底紹介!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 天然のナノチューブ「微小管」の中にタンパク質を入れると何が起こる?
  2. トイレから学ぶ超撥水と超親水
  3. 分子の点群を帰属する
  4. 二酸化炭素をはきだして♪
  5. 林 民生 Tamio Hayashi
  6. 第6回慶應有機化学若手シンポジウム
  7. 学振申請書を磨き上げるポイント ~自己評価欄 編(前編)~
  8. MacでChem3Dー新たなる希望ー
  9. 米で処方せん不要の「やせ薬」発売、売り切れ続出
  10. 世界初の気体可塑性エラストマー!!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2015年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

注目情報

最新記事

薬学会一般シンポジウム『異分野融合で切り込む!膜タンパク質の世界』

3月に入って2022年度も終わりが近づき、いよいよ学会年会シーズンになってきました。コロナ禍も終わり…

【ナード研究所】新卒採用情報(2024年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代…と、…

株式会社ナード研究所ってどんな会社?

株式会社ナード研究所(NARD)は、化学物質の受託合成、受託製造、受託研究を通じ…

マテリアルズ・インフォマティクスを実践するためのベイズ最適化入門 -デモンストレーションで解説-

開催日:2023/04/05 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

ペプチド修飾グラフェン電界効果トランジスタを用いた匂い分子の高感度センシング

第493回のスポットライトリサーチは、東京工業大学 物質理工学院 材料系 早水研究室の本間 千柊(ほ…

日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 2

第一弾に引き続き第二弾。薬学会付設展示会における協賛企業とのケムステコラボキャンペーンです。…

有機合成化学協会誌2023年3月号:Cynaropicri・DPAGT1阻害薬・トリフルオロメチル基・イソキサゾール・触媒的イソシアノ化反応

有機合成化学協会が発行する有機合成化学協会誌、2023年3月号がオンライン公開されました。早…

日本薬学会  第143年会 付設展示会ケムステキャンペーン Part 1

さて、日本化学会春季年会の付設展示会ケムステキャンペーンを3回にわたり紹介しましたが、ほぼ同時期に行…

推進者・企画者のためのマテリアルズ・インフォマティクスの組織推進の進め方 -組織で利活用するための実施例を紹介-

開催日:2023/03/22 申し込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

日本化学会 第103春季年会 付設展示会ケムステキャンペーン Part3

Part 1・Part2に引き続き第三弾。日本化学会年会の付設展示会に出展する企業とのコラボです。…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP