[スポンサーリンク]

化学者のつぶやき

光レドックス触媒と有機分子触媒の協同作用

[スポンサーリンク]

Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric
Alkylation of Aldehydes
Nicewics, D. A.; MacMillan, D. A. Science 2008, published on ScienceExpress doi:10.1126/science.1161976

プリンストン大学MacMillanらによる報告です。

以前、彼らは新規活性化方式としてのSOMO-Activation概念[1]を提唱し、有機分子触媒の新たなフィールドを切りひらきました。 すなわち、系中で生成するエナミン中間体を一電子酸化し、生じたラジカル中間体を化学結合形成に活用する、というものです。

 

今回彼らは、一電子酸化過程の触媒化に成功し、更なる発展を成し遂げました。キーポイントとなったのは、光レドックス触媒としてよく知られているRu(bpy)32+錯体[2]を共存させたことです。これによりSOMO-Activation形式で、アルデヒドの不斉α-アルキル化が進行します。Ru錯体が無いと反応はほとんど進行しません。

 

いくつかの適用例を下図に示しておきます。
オレフィンや、シクロプロピルフェニル(ラジカルクロック)基が反応しない事から、過去提唱されていたエナミンラジカルとは異なる中間体の存在が示唆されてます。α-ハロケトンは問題なく適用できますが、α-ハロエステルは電子求引基を持つほうが良いようです。とりわけ、置換反応には適用困難とされる、ラセミ体の三級アルキルハライドが適用可能というのは特筆すべき点であり、この反応の強力さを如実に示しています。

 

photoredox_macmillan_3.gif

安価な市販試薬を用いて室温下に行え、UVなどの強エネルギー光源を必要とせず、大量合成にも適用可能な優れた方法です。ただ、現在のところ、アクセプターはα-ハロカルボニル化合物に限られてしまうようです。

 

このような基質一般性、およびルテニウム錯体の酸化還元電位値を考慮し、彼らは「アルキルハライドから還元的に生成する電子不足アルキルラジカルが、電子豊富エナミンに付加する」という触媒サイクルを提唱しています。

 

photoredox_macmillan_2.gif
(クリックすると大きな画像が出ます:Science誌より転載)

ルテニウムの配位子を変更することで、酸化還元電位を調節しうる可能性についても論文中で触れられています。今後さらなるチューニングにより、基質一般性の拡張などが期待できます。
これまで関連が薄いと考えられていた分野の化学同士を結びつけている、かなり意欲的な研究の一つではないでしょうか。

 

関連論文

[1] Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316, 582. DOI: 10.1126/science. 1142696
[2] (a) Kalyanasundaram, K. Coord. Chem. Rev. 1982, 46, 159. (b) Juris, A. et al. Coord. Chem. Rev. 1988, 84, 85.

 

関連試薬

Aldrich


mfcd03426983.gifMacMillan触媒
: (5S)-(?)-2,2,3-Trimethyl-5-benzyl-4-imidazolidinone monohydrochloride

分子量:254.76

CAS:278173-23-2

製品コード:569763

用途:不斉有機分子触媒

説明:2000年に報告された、触媒的不斉Diels-Alder反応を皮切りに、MacMillanらは、1,3- 双極子環化付加反応や、Friedel-Crafts アルキル化反応、α- 塩素化反応、α- フッ素化反応、分子内Michael 反応などを高いエナンチオ過剰率で進行させることが可能な触媒を見出した。このイミダゾリジノン触媒を基本骨格として、さらに様々な触媒的不斉合成反応を見出している。

文献:Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc.
2000, 122, 9874.

その他のMacMillan触媒に関する記述: 有機分子触媒(Aldrichオンラインカタログ, PDFファイル)

 

関連リンク

 

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. サイエンスアゴラの魅力を聞くー「日本蛋白質構造データバンク」工藤…
  2. 今年も出ます!!サイエンスアゴラ2015
  3. 東京理科大学みらい研究室にお邪魔してきました
  4. DNAが絡まないためのループ
  5. メタンハイドレートの化学
  6. 留学せずに英語をマスターできるかやってみた(1年目)
  7. アメリカで Ph. D. を取る –研究室に訪問するの巻–
  8. 水素社会~アンモニアボラン~

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 超一流化学者の真剣勝負が生み出した丸かぶり論文
  2. 劣性遺伝子押さえ込む メンデルの法則仕組み解明
  3. ウェブサイトのリニューアル
  4. 概日リズムを司る天然変性転写因子の阻害剤開発に成功
  5. 抗がん剤大量生産に期待 山大農学部豊増助教授 有機化合物生成の遺伝子発見
  6. アレクサンダー・リッチ Alexander Rich
  7. 『分子標的』に期待
  8. ゲルマニウム触媒でアルキンからベンゼンをつくる
  9. 記事評価&コメントウィジェットを導入
  10. 홍 순 혁 Soon Hyeok Hong

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

広瀬すずさんがTikTok動画に初挑戦!「#AGCチャレンジ」を開始

TikTok For BusinessとAGC株式会社は、AGCをより多くの人に知っていただくことを…

新規性喪失の例外規定とは?

bergです。今回は論文投稿・学会発表と特許出願を同時に行うための新規性喪失の例外規定の適用手続きに…

新車の香りは「発がん性物質」の香り、1日20分嗅ぐだけで発がんリスクが高まる可能性

「新車の香り」には、がんや生殖障害、子どもの先天性欠損症などを引き起こす可能性があるベンゼンやホルム…

溶液を流すだけで誰でも簡単に高分子を合成できるリサイクル可能な不均一系ラジカル発生剤の開発

第 295 回のスポットライトリサーチは東京大学豊田研究室の博士課程 1 年 岡美奈実さんと修士課程…

Carl Boschの人生 その9

Tshozoです。書いてると色々膨らんで収集がつかなくなりますね。ということで前回の続き。W…

創薬・医療系ベンチャー支援プログラム”BlockbusterTOKYO” ビジネスプラン発表会を開催!

東京都が主催し、Beyond Next Ventures株式会社が運営するBlockbuster T…

酸化反応を駆使した(-)-deoxoapodineの世界最短合成

第294回のスポットライトリサーチは、吉田慶 博士にお願いしました。今回取り上げる研究は有機…

特許取得のための手続き

bergです。本記事では特許出願に必要な手続きについてかいつまんでご紹介します。皆さんの研究もひょっ…

Chem-Station Twitter

PAGE TOP