[スポンサーリンク]

化学者のつぶやき

光レドックス触媒と有機分子触媒の協同作用

Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric
Alkylation of Aldehydes
Nicewics, D. A.; MacMillan, D. A. Science 2008, published on ScienceExpress doi:10.1126/science.1161976

プリンストン大学MacMillanらによる報告です。

以前、彼らは新規活性化方式としてのSOMO-Activation概念[1]を提唱し、有機分子触媒の新たなフィールドを切りひらきました。 すなわち、系中で生成するエナミン中間体を一電子酸化し、生じたラジカル中間体を化学結合形成に活用する、というものです。

 

今回彼らは、一電子酸化過程の触媒化に成功し、更なる発展を成し遂げました。キーポイントとなったのは、光レドックス触媒としてよく知られているRu(bpy)32+錯体[2]を共存させたことです。これによりSOMO-Activation形式で、アルデヒドの不斉α-アルキル化が進行します。Ru錯体が無いと反応はほとんど進行しません。

 

いくつかの適用例を下図に示しておきます。
オレフィンや、シクロプロピルフェニル(ラジカルクロック)基が反応しない事から、過去提唱されていたエナミンラジカルとは異なる中間体の存在が示唆されてます。α-ハロケトンは問題なく適用できますが、α-ハロエステルは電子求引基を持つほうが良いようです。とりわけ、置換反応には適用困難とされる、ラセミ体の三級アルキルハライドが適用可能というのは特筆すべき点であり、この反応の強力さを如実に示しています。

 

photoredox_macmillan_3.gif

安価な市販試薬を用いて室温下に行え、UVなどの強エネルギー光源を必要とせず、大量合成にも適用可能な優れた方法です。ただ、現在のところ、アクセプターはα-ハロカルボニル化合物に限られてしまうようです。

 

このような基質一般性、およびルテニウム錯体の酸化還元電位値を考慮し、彼らは「アルキルハライドから還元的に生成する電子不足アルキルラジカルが、電子豊富エナミンに付加する」という触媒サイクルを提唱しています。

 

photoredox_macmillan_2.gif
(クリックすると大きな画像が出ます:Science誌より転載)

ルテニウムの配位子を変更することで、酸化還元電位を調節しうる可能性についても論文中で触れられています。今後さらなるチューニングにより、基質一般性の拡張などが期待できます。
これまで関連が薄いと考えられていた分野の化学同士を結びつけている、かなり意欲的な研究の一つではないでしょうか。

 

関連論文

[1] Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316, 582. DOI: 10.1126/science. 1142696
[2] (a) Kalyanasundaram, K. Coord. Chem. Rev. 1982, 46, 159. (b) Juris, A. et al. Coord. Chem. Rev. 1988, 84, 85.

 

関連試薬

Aldrich


mfcd03426983.gifMacMillan触媒
: (5S)-(?)-2,2,3-Trimethyl-5-benzyl-4-imidazolidinone monohydrochloride

分子量:254.76

CAS:278173-23-2

製品コード:569763

用途:不斉有機分子触媒

説明:2000年に報告された、触媒的不斉Diels-Alder反応を皮切りに、MacMillanらは、1,3- 双極子環化付加反応や、Friedel-Crafts アルキル化反応、α- 塩素化反応、α- フッ素化反応、分子内Michael 反応などを高いエナンチオ過剰率で進行させることが可能な触媒を見出した。このイミダゾリジノン触媒を基本骨格として、さらに様々な触媒的不斉合成反応を見出している。

文献:Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc.
2000, 122, 9874.

その他のMacMillan触媒に関する記述: 有機分子触媒(Aldrichオンラインカタログ, PDFファイル)

 

関連リンク

 

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 青いセレンディピティー
  2. 人工DNAから医薬をつくる!
  3. 科研費の審査員を経験して
  4. Dead Endを回避せよ!「全合成・極限からの一手」⑨ (解答…
  5. 第3回ITbM国際シンポジウム(ISTbM-3)、第11回平田ア…
  6. 文献検索サイトをもっと便利に:X-MOLをレビュー
  7. 開催間近!ケムステも出るサイエンスアゴラ2013
  8. 最長のヘリセンをつくった

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. howeverの使い方
  2. 層状複水酸化物のナノ粒子化と触媒応用
  3. 黒よりも黒い? 「最も暗い」物質 米大学チーム作製
  4. 森田・ベイリス・ヒルマン反応 Morita-Baylis-Hillman Reaction
  5. 光刺激に応答して形状を変化させる高分子の合成
  6. ジェームズ・ロスマン James Rothman
  7. (-)-ウシクライドAの全合成と構造決定
  8. ルテニウム触媒によるC-C結合活性化を介した水素移動付加環化型カップリング
  9. アルメニア初の化学系国際学会に行ってきた!①
  10. PACIFICHEM2010に参加してきました!④

関連商品

注目情報

注目情報

最新記事

二重可変領域抗体 Dual Variable Domain Immunoglobulin

抗体医薬はリウマチやガンなどの難治性疾患治療に有効であり、現在までに活発に開発が進められてきた。…

サイエンスイングリッシュキャンプin東京工科大学

産業のグローバル化が進み、エンジニアにも国際的なセンスや語学力が求められているなか、東京工科大学(東…

特定の場所の遺伝子を活性化できる新しい分子の開発

ついにスポットライトリサーチも150回。第150回目は理化学研究所 博士研究員の谷口 純一 (たにぐ…

出光・昭和シェル、統合を発表

石油元売り2位の出光興産と4位の昭和シェル石油は10日、2019年4月に経営統合すると正式に発表した…

天然物の全合成研究ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

「アジア発メジャー」狙う大陽日酸、欧州市場に参入

大陽日酸は北米に次ぐ成長が見込める欧州市場に参入を果たす。同業の米プラクスエアが欧州で展開する産業ガ…

Chem-Station Twitter

PAGE TOP