[スポンサーリンク]

化学者のつぶやき

光レドックス触媒と有機分子触媒の協同作用

[スポンサーリンク]

Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric
Alkylation of Aldehydes
Nicewics, D. A.; MacMillan, D. A. Science 2008, published on ScienceExpress doi:10.1126/science.1161976

プリンストン大学MacMillanらによる報告です。

以前、彼らは新規活性化方式としてのSOMO-Activation概念[1]を提唱し、有機分子触媒の新たなフィールドを切りひらきました。 すなわち、系中で生成するエナミン中間体を一電子酸化し、生じたラジカル中間体を化学結合形成に活用する、というものです。

 

今回彼らは、一電子酸化過程の触媒化に成功し、更なる発展を成し遂げました。キーポイントとなったのは、光レドックス触媒としてよく知られているRu(bpy)32+錯体[2]を共存させたことです。これによりSOMO-Activation形式で、アルデヒドの不斉α-アルキル化が進行します。Ru錯体が無いと反応はほとんど進行しません。

 

いくつかの適用例を下図に示しておきます。
オレフィンや、シクロプロピルフェニル(ラジカルクロック)基が反応しない事から、過去提唱されていたエナミンラジカルとは異なる中間体の存在が示唆されてます。α-ハロケトンは問題なく適用できますが、α-ハロエステルは電子求引基を持つほうが良いようです。とりわけ、置換反応には適用困難とされる、ラセミ体の三級アルキルハライドが適用可能というのは特筆すべき点であり、この反応の強力さを如実に示しています。

 

photoredox_macmillan_3.gif

安価な市販試薬を用いて室温下に行え、UVなどの強エネルギー光源を必要とせず、大量合成にも適用可能な優れた方法です。ただ、現在のところ、アクセプターはα-ハロカルボニル化合物に限られてしまうようです。

 

このような基質一般性、およびルテニウム錯体の酸化還元電位値を考慮し、彼らは「アルキルハライドから還元的に生成する電子不足アルキルラジカルが、電子豊富エナミンに付加する」という触媒サイクルを提唱しています。

 

photoredox_macmillan_2.gif
(クリックすると大きな画像が出ます:Science誌より転載)

ルテニウムの配位子を変更することで、酸化還元電位を調節しうる可能性についても論文中で触れられています。今後さらなるチューニングにより、基質一般性の拡張などが期待できます。
これまで関連が薄いと考えられていた分野の化学同士を結びつけている、かなり意欲的な研究の一つではないでしょうか。

 

関連論文

[1] Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316, 582. DOI: 10.1126/science. 1142696
[2] (a) Kalyanasundaram, K. Coord. Chem. Rev. 1982, 46, 159. (b) Juris, A. et al. Coord. Chem. Rev. 1988, 84, 85.

 

関連試薬

Aldrich


mfcd03426983.gifMacMillan触媒
: (5S)-(?)-2,2,3-Trimethyl-5-benzyl-4-imidazolidinone monohydrochloride

分子量:254.76

CAS:278173-23-2

製品コード:569763

用途:不斉有機分子触媒

説明:2000年に報告された、触媒的不斉Diels-Alder反応を皮切りに、MacMillanらは、1,3- 双極子環化付加反応や、Friedel-Crafts アルキル化反応、α- 塩素化反応、α- フッ素化反応、分子内Michael 反応などを高いエナンチオ過剰率で進行させることが可能な触媒を見出した。このイミダゾリジノン触媒を基本骨格として、さらに様々な触媒的不斉合成反応を見出している。

文献:Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc.
2000, 122, 9874.

その他のMacMillan触媒に関する記述: 有機分子触媒(Aldrichオンラインカタログ, PDFファイル)

 

関連リンク

 

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 材料開発の変革をリードするスタートアップのBizポジションとは?…
  2. IRの基礎知識
  3. ドラマチック有機合成化学: 感動の瞬間100
  4. Altmetric Score Top 100をふりかえる ~2…
  5. 有機合成化学協会誌2020年3月号:電子欠損性ホウ素化合物・不斉…
  6. 【化学×AI・機械学習クラウド】実験科学者・エンジニア自身が実践…
  7. メタンハイドレートの化学 ~その2~
  8. 水蒸気侵入によるデバイス劣化を防ぐ封止フィルム

注目情報

ピックアップ記事

  1. 引っ張ると頑丈になる高分子ゲル:可逆な伸長誘起結晶化による強靭性と復元性の両立
  2. 有機亜鉛試薬 Organozinc Reagent
  3. 第22回「ベンゼン環の表と裏を利用した有機合成」植村元一教授
  4. 化学者のためのエレクトロニクス講座~代表的な半導体素子編
  5. 三井化学、出光興産と有機EL材料の協業体制構築で合意
  6. 光触媒の活性化機構の解明研究
  7. 有機反応を俯瞰するシリーズーまとめ
  8. ブレデレック オキサゾール合成 Bredereck Oxazole Synthesis
  9. ブロモジメチルスルホニウムブロミド:Bromodimethylsulfonium Bromide
  10. 有機合成化学協会誌2024年7月号:イミン類縁体・縮環アズレン・C–O結合ホモリシス・ハロカルビン・触媒的バイオマス分解

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2008年9月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

ナノグラフェンの高速水素化に成功!メカノケミカル法を用いた芳香環の水素化

第660回のスポットライトリサーチは、名古屋大学大学院理学研究科(有機化学研究室)博士後期課程3年の…

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP