[スポンサーリンク]

化学者のつぶやき

光レドックス触媒と有機分子触媒の協同作用

Merging Photoredox Catalysis with Organocatalysis: The Direct Asymmetric
Alkylation of Aldehydes
Nicewics, D. A.; MacMillan, D. A. Science 2008, published on ScienceExpress doi:10.1126/science.1161976

プリンストン大学MacMillanらによる報告です。

以前、彼らは新規活性化方式としてのSOMO-Activation概念[1]を提唱し、有機分子触媒の新たなフィールドを切りひらきました。 すなわち、系中で生成するエナミン中間体を一電子酸化し、生じたラジカル中間体を化学結合形成に活用する、というものです。

 

今回彼らは、一電子酸化過程の触媒化に成功し、更なる発展を成し遂げました。キーポイントとなったのは、光レドックス触媒としてよく知られているRu(bpy)32+錯体[2]を共存させたことです。これによりSOMO-Activation形式で、アルデヒドの不斉α-アルキル化が進行します。Ru錯体が無いと反応はほとんど進行しません。

 

いくつかの適用例を下図に示しておきます。
オレフィンや、シクロプロピルフェニル(ラジカルクロック)基が反応しない事から、過去提唱されていたエナミンラジカルとは異なる中間体の存在が示唆されてます。α-ハロケトンは問題なく適用できますが、α-ハロエステルは電子求引基を持つほうが良いようです。とりわけ、置換反応には適用困難とされる、ラセミ体の三級アルキルハライドが適用可能というのは特筆すべき点であり、この反応の強力さを如実に示しています。

 

photoredox_macmillan_3.gif

安価な市販試薬を用いて室温下に行え、UVなどの強エネルギー光源を必要とせず、大量合成にも適用可能な優れた方法です。ただ、現在のところ、アクセプターはα-ハロカルボニル化合物に限られてしまうようです。

 

このような基質一般性、およびルテニウム錯体の酸化還元電位値を考慮し、彼らは「アルキルハライドから還元的に生成する電子不足アルキルラジカルが、電子豊富エナミンに付加する」という触媒サイクルを提唱しています。

 

photoredox_macmillan_2.gif
(クリックすると大きな画像が出ます:Science誌より転載)

ルテニウムの配位子を変更することで、酸化還元電位を調節しうる可能性についても論文中で触れられています。今後さらなるチューニングにより、基質一般性の拡張などが期待できます。
これまで関連が薄いと考えられていた分野の化学同士を結びつけている、かなり意欲的な研究の一つではないでしょうか。

 

関連論文

[1] Beeson, T. D.; Mastracchio, A.; Hong, J. B.; Ashton, K.; MacMillan, D. W. C. Science 2007, 316, 582. DOI: 10.1126/science. 1142696
[2] (a) Kalyanasundaram, K. Coord. Chem. Rev. 1982, 46, 159. (b) Juris, A. et al. Coord. Chem. Rev. 1988, 84, 85.

 

関連試薬

Aldrich


mfcd03426983.gifMacMillan触媒
: (5S)-(?)-2,2,3-Trimethyl-5-benzyl-4-imidazolidinone monohydrochloride

分子量:254.76

CAS:278173-23-2

製品コード:569763

用途:不斉有機分子触媒

説明:2000年に報告された、触媒的不斉Diels-Alder反応を皮切りに、MacMillanらは、1,3- 双極子環化付加反応や、Friedel-Crafts アルキル化反応、α- 塩素化反応、α- フッ素化反応、分子内Michael 反応などを高いエナンチオ過剰率で進行させることが可能な触媒を見出した。このイミダゾリジノン触媒を基本骨格として、さらに様々な触媒的不斉合成反応を見出している。

文献:Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc.
2000, 122, 9874.

その他のMacMillan触媒に関する記述: 有機分子触媒(Aldrichオンラインカタログ, PDFファイル)

 

関連リンク

 

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 工業製品コストはどのように決まる?
  2. イスラエルの化学ってどうよ?
  3. 単一分子を検出可能な5色の高光度化学発光タンパク質の開発
  4. 世界の「イケメン人工分子」① ~ 分子ボロミアンリング ~
  5. “follow”は便利!
  6. 磁性流体アートの世界
  7. スローン賞って知っていますか?
  8. インフルエンザ対策最前線

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 富山化学 新規メカニズムの抗インフルエンザ薬を承認申請
  2. 「ラブ・ケミストリー」の著者にインタビューしました。
  3. 化学Webギャラリー@Flickr 【Part 3】
  4. ブライアン・コビルカ Brian K. Kobilka
  5. 熊田・玉尾・コリューカップリング Kumada-Tamao-Corriu Cross Coupling
  6. ジェレマイア・ジョンソン Jeremiah A. Johnson
  7. スイスの博士課程ってどうなの?1〜ヨーロッパの博士課程を知る〜
  8. 製薬大手のロシュ、「タミフル」効果で05年売上高20%増
  9. 高峰譲吉の「アドレナリン」107年目”名誉回復”
  10. 光分解性シアニン色素をADCのリンカーに組み込む

関連商品

注目情報

注目情報

最新記事

論文・学会発表に役立つ! 研究者のためのIllustrator素材集: 素材アレンジで描画とデザインをマスターしよう!

概要Adobe Illustratorを用いたイラスト作成の入門書。すぐに使えるイラスト素材…

シアノヒドリンをカルボン酸アミドで触媒的に水和する

第189回目のスポットライトリサーチは、神田 智哉(かんだ ともや)さんにお願いしました。神…

チオカルバマートを用いたCOSのケミカルバイオロジー

チオカルバマート型硫化水素ドナー分子を用いた硫化カルボニル(COS)の生理学的機能の研究が行われた。…

触媒的不斉交差ピナコールカップリングの開発

第188回目のスポットライトリサーチは、竹田 光孝(たけだ みつたか)さんにお願いしました。…

研究者のためのCG作成術④(レンダリング編)

Naphtです。研究者のためのCG作成術①、②、③に続き、研究者向けのCGの作り方について紹介しよう…

CSJジャーナルフォーラム「ジャーナルの将来像を考える」

いよいよ今年も日化年会の期日が迫って参りました!ケムステでも例年通り、参加者の方々に有益な各種企画の…

Chem-Station Twitter

PAGE TOP