[スポンサーリンク]

化学者のつぶやき

リガンドによりCO2を選択的に導入する

初めまして、この度Chem-stationスタッフとなりました、SQと申します。有機化学や創薬化学を専門としております。

企業研究者なので頻度は少なめかと思いますが、面白い論文を読んだら投稿していこうと思いますので、皆様これからどうぞよろしくお願い致します。

第一弾の記事として、JACSに掲載された反応開発の論文を紹介したいと思います。光照射下、Ni触媒のリガンドを変えることにより、CO2挿入位置の選択性を変えることが出来るという論文です。慣れていない為、文章が稚拙な部分があるかと思いますが読んでいただけると嬉しいです。

背景

CO2を1炭素源とするカルボキシル化反応は、様々なカルボン酸を合成する上で非常に有用な反応です。その中でも、スチレンに対するCO2によるカルボキシル化反応はシンプルかつ高アトムエコノミー反応であり、これまでに数多くの研究が報告されています。また生成物のα‐メチルフェニル酢酸部位は、イブプロフェン・ナプロキセン・フェノプロフェン等の医薬品にも含まれている骨格であり非常に有用です。

スチレンに対するCO2によるカルボキシル化反応にはMarkovnikov型とanti-Markovnikov型の二通りありますが、それぞれ様々な課題がありました。多くの研究報告はMarkovnikov型ですが、強還元剤が必要であることや、基質一般性が狭いことが問題です[1]。一方、anti-Markovnikov型の反応は報告例が少なく、最近JamisonらがUV光照射下連続フロー反応にて、ラジカル中間体を経由し目的物を得ています[2]

このような背景のもと、今回レーゲンスブルク大学のKönig教授らは、ほぼ同条件の中、リガンド(とその他試薬も少し)を変えることによりカルボキシル化反応の選択性を変えられることを発見しました。

 

“Ligand-Controlled Regioselective Hydrocarboxylation of Styrenes with CO2 by Combining Visible Light and Nickel Catalysis”
Meng, Q.-Y.; Wang, S.; Huff, G. S.; König, B. J. Am. Chem. Soc. 2018, 140, 3198–3201. DOI: 10.1021/jacs.7b13448

実験結果

筆者らは、まず自らの過去の研究報告[3]を元に溶媒、添加試薬、光増感体、還元剤等種々の反応条件の最適化を行いました。

溶媒、光増感体、リガンドは、この反応においてかなり重要であり替えが効きにくい様です。Markovnikov型の時はLNiBr2(L:neocuproine)、K2CO3、Hantzsch ester (HEH)が最適条件で、anti-Markovnikov型の際はNiBr2・glyme、dppb、4-Me-HEH、LiOOCCH3が必要でした。両者共通して、溶媒はDMF、光増感体は4CzIPN(Ir(dF(Me)ppy)2(dtbbpy))PF6)が使用されていました。
Markovnikov型反応では、かなり多くの基質において最適化条件が適応可能であり、選択性が非常に高いのが印象的です。またIbuprofenやEstroneといった医薬品の合成にも適応可能であることも示されていました。

一方でanti-Markovnikov型も多くの基質に応用可能であり高い選択性でしたが、電子求引性官能基をもつ化合物では反応が進行しませんでした。

Markovnikov型の基質一般性

anti-Markovnikov型の基質一般性

反応機構

続いては反応機構です。

4CzIPNが光により励起されHEHを酸化し、2電子SET(single electron transfer)を行ってNi(Ⅱ)→Ni(0)とするところは両反応で共通のようです。反応機構

[1] Markovnikov型

neocuproineをリガンドとして用いた際は、HEHにプロトン化されNi ヒドリド錯体Bを作ります。その後、立体障害が少ない方に金属挿入が起こり(DFTにより確認)、錯体Cを形成。1電子を4CzIPNから受け取った後、速やかにCO2挿入が起こり、目的物が生成され触媒が再生成します。

[2] anti-Markovnikov型

Dppbをリガンドとして用いた時は、CO2がNi錯体Aに配位し錯体Fとなります。その後五員環中間体を経て錯体Gを形成。1電子を4CzIPNから受け取った後、速やかに開環し、還元を通して目的物が生成され触媒が再生成します。

またその他機構解明実験を通し(重水素ラベル化実験等)①スチレンに対するヒドロメタル化はどちらも不可逆的②radical中間体を経由していないということが示唆されている様でした。

所感

選択性は高いものの収率は中程度であること、機構解明が完全ではないことが今後の課題として挙げられるかなと思いますが、選択性が生じる機構解明等が詳しく考察されていた点が良かったです。高選択的にanti-Markovnikov型の目的物を得られ、実用的である点も魅力的であるため、ぜひ使ってみてはいかがでしょう。

参考文献

  1. Gaydou, M.; Moragas, T.; Juliá-Hernández, F.; Martin, R. J. Am.Chem. Soc. 2017, 139, 12161. DOI : 10.1021/jacs.7b07637
  2. Seo, H.; Liu, A.; Jamison, T. F.; J. Am. Chem. Soc. 2017, 139, 13969. DOI : 10.1021/jacs.7b05942
  3. Meng, Q.-Y.; Wang, S.; König, B.; Angew. Chem., Int. Ed. 2017, 56, 13426. DOI : 10.1002/anie.201706724
The following two tabs change content below.

SQ

某企業研究員。専門は有機合成で、趣味はスポーツ(サッカー・テニス等)や音楽(バンド活動)。 「”化学”の力で、人の健康を支える」という思いを胸に日々奮闘中。0から1を生み出したい。

関連記事

  1. 真理を追求する –2017年度ロレアル-ユネスコ女性科学者日本奨…
  2. 原油生産の切り札!? 国内原油生産の今昔物語
  3. ご注文は海外大学院ですか?〜準備編〜
  4. 天才児の見つけ方・育て方
  5. Z-選択的オレフィンメタセシス
  6. 出発原料から学ぶ「Design and Strategy in …
  7. 二酸化炭素をはきだして♪
  8. 有機化学者のラブコメ&ミステリー!?:「ラブ・ケミスト…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ムスカリン muscarine
  2. エイモス・B・スミス III Amos B. Smith III
  3. カルベン触媒によるα-ハロ-α,β-不飽和アルデヒドのエステル化反応
  4. 太陽電池バックシートの開発と評価【終了】
  5. ドミトリ・メンデレーエフの墓
  6. 化学とウェブのフュージョン
  7. 『国際化学オリンピック』 日本代表が決定
  8. 化学 美しい原理と恵み (サイエンス・パレット)
  9. ワイリー・サイエンスカフェ開設記念クイズ・キャンペーン
  10. とある農薬のはなし「クロロタロニル」について 

関連商品

注目情報

注目情報

最新記事

博士後期で学費を企業が肩代わり、北陸先端大が国内初の制度

 北陸先端科学技術大学院大学は、産業界と連携した博士人材の育成制度を2019年度から開始する。企業が…

有機ホウ素化合物を用いたSNi型立体特異的β-ラムノシル化反応の開発

第166回目のスポットライトリサーチは、慶應義塾大学理工学部博士課程・西 信哉(にし のぶや)さんに…

アルキルアミンをボロン酸エステルに変換する

不活性C(sp3)–N結合をボリル化する初めての反応が開発された。入手容易なアルキルアミンから様々な…

生物の仕組みに倣う:背景と光に応じて色が変わる顔料の開発

第165回目のスポットライトリサーチは、名古屋大学大学院工学研究科 ・坂井美紀(さかい みき)さんに…

イミデートラジカルを用いた多置換アミノアルコール合成

イミデートラジカルを用い、一挙に多置換アミノアルコールを合成する方法が開発された。穏和な条件かつ位置…

ジェフリー·ロング Jeffrey R. Long

ジェフリー·ロング(Jeffrey R. Long, 1969年xx月xx日-)は、アメリカの無機材…

PAGE TOP