[スポンサーリンク]

化学者のつぶやき

リガンドによりCO2を選択的に導入する

[スポンサーリンク]

初めまして、この度Chem-stationスタッフとなりました、SQと申します。有機化学や創薬化学を専門としております。

企業研究者なので頻度は少なめかと思いますが、面白い論文を読んだら投稿していこうと思いますので、皆様これからどうぞよろしくお願い致します。

第一弾の記事として、JACSに掲載された反応開発の論文を紹介したいと思います。光照射下、Ni触媒のリガンドを変えることにより、CO2挿入位置の選択性を変えることが出来るという論文です。慣れていない為、文章が稚拙な部分があるかと思いますが読んでいただけると嬉しいです。

背景

CO2を1炭素源とするカルボキシル化反応は、様々なカルボン酸を合成する上で非常に有用な反応です。その中でも、スチレンに対するCO2によるカルボキシル化反応はシンプルかつ高アトムエコノミー反応であり、これまでに数多くの研究が報告されています。また生成物のα‐メチルフェニル酢酸部位は、イブプロフェン・ナプロキセン・フェノプロフェン等の医薬品にも含まれている骨格であり非常に有用です。

スチレンに対するCO2によるカルボキシル化反応にはMarkovnikov型とanti-Markovnikov型の二通りありますが、それぞれ様々な課題がありました。多くの研究報告はMarkovnikov型ですが、強還元剤が必要であることや、基質一般性が狭いことが問題です[1]。一方、anti-Markovnikov型の反応は報告例が少なく、最近JamisonらがUV光照射下連続フロー反応にて、ラジカル中間体を経由し目的物を得ています[2]

このような背景のもと、今回レーゲンスブルク大学のKönig教授らは、ほぼ同条件の中、リガンド(とその他試薬も少し)を変えることによりカルボキシル化反応の選択性を変えられることを発見しました。

 

“Ligand-Controlled Regioselective Hydrocarboxylation of Styrenes with CO2 by Combining Visible Light and Nickel Catalysis”
Meng, Q.-Y.; Wang, S.; Huff, G. S.; König, B. J. Am. Chem. Soc. 2018, 140, 3198–3201. DOI: 10.1021/jacs.7b13448

実験結果

筆者らは、まず自らの過去の研究報告[3]を元に溶媒、添加試薬、光増感体、還元剤等種々の反応条件の最適化を行いました。

溶媒、光増感体、リガンドは、この反応においてかなり重要であり替えが効きにくい様です。Markovnikov型の時はLNiBr2(L:neocuproine)、K2CO3、Hantzsch ester (HEH)が最適条件で、anti-Markovnikov型の際はNiBr2・glyme、dppb、4-Me-HEH、LiOOCCH3が必要でした。両者共通して、溶媒はDMF、光増感体は4CzIPN(Ir(dF(Me)ppy)2(dtbbpy))PF6)が使用されていました。
Markovnikov型反応では、かなり多くの基質において最適化条件が適応可能であり、選択性が非常に高いのが印象的です。またIbuprofenやEstroneといった医薬品の合成にも適応可能であることも示されていました。

一方でanti-Markovnikov型も多くの基質に応用可能であり高い選択性でしたが、電子求引性官能基をもつ化合物では反応が進行しませんでした。

Markovnikov型の基質一般性

anti-Markovnikov型の基質一般性

反応機構

続いては反応機構です。

4CzIPNが光により励起されHEHを酸化し、2電子SET(single electron transfer)を行ってNi(Ⅱ)→Ni(0)とするところは両反応で共通のようです。反応機構

[1] Markovnikov型

neocuproineをリガンドとして用いた際は、HEHにプロトン化されNi ヒドリド錯体Bを作ります。その後、立体障害が少ない方に金属挿入が起こり(DFTにより確認)、錯体Cを形成。1電子を4CzIPNから受け取った後、速やかにCO2挿入が起こり、目的物が生成され触媒が再生成します。

[2] anti-Markovnikov型

Dppbをリガンドとして用いた時は、CO2がNi錯体Aに配位し錯体Fとなります。その後五員環中間体を経て錯体Gを形成。1電子を4CzIPNから受け取った後、速やかに開環し、還元を通して目的物が生成され触媒が再生成します。

またその他機構解明実験を通し(重水素ラベル化実験等)①スチレンに対するヒドロメタル化はどちらも不可逆的②radical中間体を経由していないということが示唆されている様でした。

所感

選択性は高いものの収率は中程度であること、機構解明が完全ではないことが今後の課題として挙げられるかなと思いますが、選択性が生じる機構解明等が詳しく考察されていた点が良かったです。高選択的にanti-Markovnikov型の目的物を得られ、実用的である点も魅力的であるため、ぜひ使ってみてはいかがでしょう。

参考文献

  1. Gaydou, M.; Moragas, T.; Juliá-Hernández, F.; Martin, R. J. Am.Chem. Soc. 2017, 139, 12161. DOI : 10.1021/jacs.7b07637
  2. Seo, H.; Liu, A.; Jamison, T. F.; J. Am. Chem. Soc. 2017, 139, 13969. DOI : 10.1021/jacs.7b05942
  3. Meng, Q.-Y.; Wang, S.; König, B.; Angew. Chem., Int. Ed. 2017, 56, 13426. DOI : 10.1002/anie.201706724

SQ

投稿者の記事一覧

某企業研究員。専門は有機合成で、趣味はスポーツ(サッカー・テニス等)や音楽(バンド活動)。
「”化学”の力で、人の健康を支える」という思いを胸に日々奮闘中。0から1を生み出したい。

関連記事

  1. 【動画】元素のうた―日本語バージョン
  2. とある化学者の海外研究生活:スイス留学編
  3. 【速報】2010年ノーベル化学賞決定!『クロスカップリング反応』…
  4. 【書籍】「ルールを変える思考法」から化学的ビジネス理論を学ぶ
  5. ご注文は海外大学院ですか?〜出願編〜
  6. 東北地方太平洋沖地震に募金してみませんか。
  7. 化合物と結合したタンパク質の熱安定性変化をプロテオームワイドに解…
  8. −(マイナス)と協力して+(プラス)を強くする触媒

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 野依賞―受賞者一覧
  2. ローカル環境でPDFを作成する(Windows版)
  3. リン酸アルミニウムを飲んだら爆発?
  4. 高分子鎖デザインがもたらすポリマーサイエンスの再創造
  5. 化学五輪、「金」の高3連続出場 7月に東京開催
  6. 『リンダウ・ノーベル賞受賞者会議』を知っていますか?
  7. MT-スルホン MT-Sulfone
  8. 赤絵磁器を彩る絵具:その特性解明と改良
  9. Reaxys Prize 2011発表!
  10. クレイグ・ヴェンター J. Craig Venter

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

【ケムステSlackに訊いてみた⑤】再現性が取れなくなった!どうしてる?

日本初のオープン化学コミュニティ・ケムステSlackの質問チャンネルに流れてきたQ&Aの紹介…

但馬 敬介 Keisuke TAJIMA

但馬 敬介(TAJIMA Keisuke, 1974年7月23日 – )は、日本の高分子化学者である…

Carl Boschの人生 その10

Tshozoです。このシリーズも10回を迎えましたが筆者の人生は進んでいません。先日気づいた…

「つける」と「はがす」の新技術|分子接合と表面制御 R3

開講期間令和3(2021)年  9月8日(水)、9日(木)(計2日間)※状況により、we…

第19回ケムステVシンポ「化学者だって起業するっつーの」を開催します!

少し前に化学者のつぶやきからこのような記事が出ました:【ケムステSlackに訊いて見た④】化学系学生…

10種類のスパチュラを試してみた

大好評、「試してみた」シリーズの第6弾。今回は試薬の秤量にか欠かせない、…

第48回「分子の光応答に基づく新現象・新機能の創出」森本 正和 教授

久々の研究者へのインタビューです。第48回は、立教大学の森本正和先生にお願いいたしました。第17回ケ…

畠山琢次 Takuji Hatakeyama

畠山琢次 (はたけやま たくじ)は、日本の化学者である。専門は有機合成化学,材料化学。2021年現在…

Chem-Station Twitter

PAGE TOP