[スポンサーリンク]

ケムステしごと

BASFとはどんな会社?-2

[スポンサーリンク]

前回の続き。ここ10年程度の主な研究成果をご紹介しましょう。

Tshozoです。皆さんはボスに叱られて不整脈になったことはありますか?私はあります。

前回に続き、BASFの研究成果・活動の一例、HPPO法による酸化プロピレン(PO:Propylene Oxide)の事業化についてご紹介します。他にもStrobilurin Aの合成や光学活性アミンの合成、イオン性液体の実用化など数多くあるのですが、ボリュームが大きくなるので今回はこれだけに留め、他はまた次の機会にご紹介します。

では無駄口たたかずガンガンいきます。

 

”HPPO法によるPOの新規合成法事業化(2008年・Dowと協業)”

POはプロピレンから合成される工業製品の中間体です。これを原料として出来るグリコール類やポリオール類は、塗膜や薄膜形成のための溶媒・不凍液・ポリウレタンモノマ(又は変性剤)・染色剤など多くの用途に使用されており、生分解性も比較的高いことから工業的に極めて重要な位置にあります。年間生産量は何と650万トンに達します。

BASF_11.PNG

POの主な材料展開先

 で、従来そのPOをどう合成していたか。工業的には主にA.プロピレンからクロロヒドリンを経由する合成方法 と、 B. スチレンモノマ-PO法 の2種類がありました。

BASF_12

従来のPO合成法・上がAで下がB

 これらの反応、実際には副生成物を多く発生させてしまうという問題を抱えていました。まずAは相当量の塩化カルシウム(CaCl2・重量比でPOの1.5倍)を発生しますし、Bは出来たスチレンが副生成物になります。

これに対し住友化学が2006年に中間体としてクメンを使用する方法を編み出しました。具体的には上記Bの左側のベンジルアルコールではなくクミルアルコールを使うものです。これを水素で還元後、Airで酸化させてクメンパーヒドロキシドを作り左側を回すプロセスを使っています(実は工業的にはこちらの住友化学の方が数十万トンレベルの量産に先鞭をつけました・しかし個人的にはクメンパーヒドロキシドが多段反応であるため、収率はそこまでよくないのではないかという気がします)。

これらの手法をさらに進化させ、より低コストでPOを供給するにはどうすればよいか、という要求に応えたのがBASFがDowと協業で完成させたHPPO法(過酸化水素法)でした。

BASF_13.PNG

HPPO合成法・理屈上は出る生成物が水だけ!

反応温度も30~80℃とマイルド、ただし圧力はなぜか10~30barの低圧のもよう

 これを実現したのは、BASFが誇る触媒技術です。チタンシリケート系不均一触媒を用いて、下記のようなスキームで推定される反応によりPOを合成しています。この反応は以前からよく知られていたようですが、実際の転化率は50%程度と低かったために採用されていなかったとのことです。BASFは触媒を工夫することでこの転化率を90%以上に引き上げ(95%以上とも言われます)、実用化にこぎつけました。

BASF_14

HPPO合成法のメカニズム・メタノールが重要な役割を果たしている

 上図のメカニズムを解明しているとすると、副反応が出難いようにエンジニアリング上の工夫をしている可能性が高いです。

ただプロセスとしてはまだまだ未完成で、安定供給できる過酸化水素プラントを真横に作らなければならんので投資コストが高いとか(本件はDowのほか、過酸化水素最大手のSolvayも巻き込んでます。本反応は安価な過酸化水素が供給されないとコスト競争力が低くなりますので、過酸化水素の価格決定力を持つSolvayを巻き込むのは当然の判断なのでしょう)、水に溶解したメタノールの分離に熱やスチームを大量に消費するとか下記のような副反応を起こすなどの問題を抱えています。

これらの点は先に挙げた住友化学でも同様の問題を抱えていると思われ、どちらがより単純な系でスケールメリットを以って廉価なPOを供給できるのか、というところの戦いになると思われます。正直技術的にはレベルがいずれも高く、優劣つけ難い勝負になるのではないかと予想しています。

 BASF_15.PNG

生じる副反応・特に過酸化水素があるせいで不可避的に発生する

真ん中の反応が厄介と思われる

 ということで今回はここまで。次回はよりBASFらしい研究成果である、イオン性液体について取り上げます。

【注 ・・・華々しく事業化されたこのHPPO法ですが、欧州地域はともかくアジア地域においてBASFは協業のDowと「地域ごとの生産量・供給量と取り分」に関し同意に至らなかったため、プロジェクトから手を引くという決断を下しています。ここらへんはビジネスとしての厳しさ、ということでしょう】

●今回の参考スライド:こちらです

Avatar photo

Tshozo

投稿者の記事一覧

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. CEMS Topical Meeting Online 機能性材…
  2. STAP細胞問題から見えた市民と科学者の乖離ー前編
  3. 無保護カルボン酸のラジカル機構による触媒的酸化反応の開発
  4. プロドラッグって
  5. 反応がうまくいかないときは冷やしてみてはいかが?
  6. カーボンナノベルト合成初成功の舞台裏 (1)
  7. ナノチューブを簡単にそろえるの巻
  8. アスタチンを薬に使う!?

注目情報

ピックアップ記事

  1. 【解ければ化学者】ビタミン C はどれ?
  2. 原子移動ラジカル重合 Atom Transfer Radical Polymerization
  3. 耐熱性生分解プラスチック開発 150度でも耐用 阪大
  4. 兄貴達と化学物質
  5. 2023年から始めるマテリアルズ・インフォマティクスの進め方 〜<期間限定>MIスターティングパッケージ企画もご紹介〜
  6. センター試験を解いてみた
  7. ドミトリ・メンデレーエフの墓
  8. 光とともに変身する有機結晶?! ~紫外光照射で発光色変化しながら相転移する結晶の発見
  9. 薬学部6年制の現状と未来
  10. ADC薬基礎編: 着想の歴史的背景と小分子薬・抗体薬との比較

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年9月
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

最新記事

第32回光学活性化合物シンポジウム

第32回光学活性化合物シンポジウムのご案内光学活性化合物の合成および機能創出に関する研究で顕著な…

位置・立体選択的に糖を重水素化するフロー合成法を確立 ― Ru/C触媒カートリッジで150時間以上の連続運転を実証 ―

第 659回のスポットライトリサーチは、岐阜薬科大学大学院 アドバンストケミストリー…

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP