[スポンサーリンク]

ケムステしごと

BASFとはどんな会社?-2

[スポンサーリンク]

前回の続き。ここ10年程度の主な研究成果をご紹介しましょう。

Tshozoです。皆さんはボスに叱られて不整脈になったことはありますか?私はあります。

前回に続き、BASFの研究成果・活動の一例、HPPO法による酸化プロピレン(PO:Propylene Oxide)の事業化についてご紹介します。他にもStrobilurin Aの合成や光学活性アミンの合成、イオン性液体の実用化など数多くあるのですが、ボリュームが大きくなるので今回はこれだけに留め、他はまた次の機会にご紹介します。

では無駄口たたかずガンガンいきます。

 

”HPPO法によるPOの新規合成法事業化(2008年・Dowと協業)”

POはプロピレンから合成される工業製品の中間体です。これを原料として出来るグリコール類やポリオール類は、塗膜や薄膜形成のための溶媒・不凍液・ポリウレタンモノマ(又は変性剤)・染色剤など多くの用途に使用されており、生分解性も比較的高いことから工業的に極めて重要な位置にあります。年間生産量は何と650万トンに達します。

BASF_11.PNG

POの主な材料展開先

 で、従来そのPOをどう合成していたか。工業的には主にA.プロピレンからクロロヒドリンを経由する合成方法 と、 B. スチレンモノマ-PO法 の2種類がありました。

BASF_12

従来のPO合成法・上がAで下がB

 これらの反応、実際には副生成物を多く発生させてしまうという問題を抱えていました。まずAは相当量の塩化カルシウム(CaCl2・重量比でPOの1.5倍)を発生しますし、Bは出来たスチレンが副生成物になります。

これに対し住友化学が2006年に中間体としてクメンを使用する方法を編み出しました。具体的には上記Bの左側のベンジルアルコールではなくクミルアルコールを使うものです。これを水素で還元後、Airで酸化させてクメンパーヒドロキシドを作り左側を回すプロセスを使っています(実は工業的にはこちらの住友化学の方が数十万トンレベルの量産に先鞭をつけました・しかし個人的にはクメンパーヒドロキシドが多段反応であるため、収率はそこまでよくないのではないかという気がします)。

これらの手法をさらに進化させ、より低コストでPOを供給するにはどうすればよいか、という要求に応えたのがBASFがDowと協業で完成させたHPPO法(過酸化水素法)でした。

BASF_13.PNG

HPPO合成法・理屈上は出る生成物が水だけ!

反応温度も30~80℃とマイルド、ただし圧力はなぜか10~30barの低圧のもよう

 これを実現したのは、BASFが誇る触媒技術です。チタンシリケート系不均一触媒を用いて、下記のようなスキームで推定される反応によりPOを合成しています。この反応は以前からよく知られていたようですが、実際の転化率は50%程度と低かったために採用されていなかったとのことです。BASFは触媒を工夫することでこの転化率を90%以上に引き上げ(95%以上とも言われます)、実用化にこぎつけました。

BASF_14

HPPO合成法のメカニズム・メタノールが重要な役割を果たしている

 上図のメカニズムを解明しているとすると、副反応が出難いようにエンジニアリング上の工夫をしている可能性が高いです。

ただプロセスとしてはまだまだ未完成で、安定供給できる過酸化水素プラントを真横に作らなければならんので投資コストが高いとか(本件はDowのほか、過酸化水素最大手のSolvayも巻き込んでます。本反応は安価な過酸化水素が供給されないとコスト競争力が低くなりますので、過酸化水素の価格決定力を持つSolvayを巻き込むのは当然の判断なのでしょう)、水に溶解したメタノールの分離に熱やスチームを大量に消費するとか下記のような副反応を起こすなどの問題を抱えています。

これらの点は先に挙げた住友化学でも同様の問題を抱えていると思われ、どちらがより単純な系でスケールメリットを以って廉価なPOを供給できるのか、というところの戦いになると思われます。正直技術的にはレベルがいずれも高く、優劣つけ難い勝負になるのではないかと予想しています。

 BASF_15.PNG

生じる副反応・特に過酸化水素があるせいで不可避的に発生する

真ん中の反応が厄介と思われる

 ということで今回はここまで。次回はよりBASFらしい研究成果である、イオン性液体について取り上げます。

【注 ・・・華々しく事業化されたこのHPPO法ですが、欧州地域はともかくアジア地域においてBASFは協業のDowと「地域ごとの生産量・供給量と取り分」に関し同意に至らなかったため、プロジェクトから手を引くという決断を下しています。ここらへんはビジネスとしての厳しさ、ということでしょう】

●今回の参考スライド:こちらです

Tshozo

Tshozo

投稿者の記事一覧

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. 論文投稿・出版に役立つ! 10の記事
  2. 水蒸気侵入によるデバイス劣化を防ぐ封止フィルム: AFTINNO…
  3. クリーンなラジカル反応で官能基化する
  4. 未来のノーベル化学賞候補者
  5. 新形式の芳香族化合物を目指して~反芳香族シクロファンにおける三次…
  6. 1-ヒドロキシタキシニンの不斉全合成
  7. 君はPHOZONを知っているか?
  8. (+)-フロンドシンBの超短工程合成

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 完熟バナナはブラックライトで青く光る
  2. 燃える化学の動画を集めてみました
  3. シクロファン+ペリレンビスイミドで芳香環を認識
  4. 『元素周期 ~萌えて覚える化学の基本~』がドラマCD化!!!
  5. N-ヨードサッカリン:N-Iodosaccharin
  6. マンガン触媒による飽和炭化水素の直接アジド化
  7. 有機合成の落とし穴
  8. 化学に関係ある国旗を集めてみた
  9. 複雑なアルカロイド合成
  10. “秒”で分析 をあたりまえに―利便性が高まるSFC

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

非古典的カルボカチオンを手懐ける

キラルなブレンステッド酸触媒による非古典的カルボカチオンのエナンチオ選択的反応が開発された。低分子触…

CEMS Topical Meeting Online 機能性材料の励起状態化学

1月28日に毎年行われている理研の無料シンポジウムが開催されるようです。事前参加登録が必要なので興味…

カルボン酸に気をつけろ! グルクロン酸抱合の驚異

 カルボン酸は、カルボキシ基 (–COOH) を有する有機化合物の一群です。カルボン…

第138回―「不斉反応の速度論研究からホモキラリティの起源に挑む」Donna Blackmond教授

第138回の海外化学者インタビューはドナ・ブラックモンド教授です。2009年12月現在、インペリアル…

Ru触媒で異なるアルキン同士をantiで付加させる

Ru触媒を用いたアルキンのanti選択的ヒドロおよびクロロアルキニル化反応が開発された。本反応は共役…

化学系必見!博物館特集 野辺山天文台編~HC11Nってどんな分子?~

bergです。突然ですが今回から「化学系必見!博物館特集」と銘打って、私が実際に訪れたいちおしの博物…

有機合成化学協会誌2021年1月号:コロナウイルス・脱ニトロ型カップリング・炭素環・ヘテロ環合成法・環状γ-ケトエステル・サキシトキシン

有機合成化学協会が発行する有機合成化学協会誌、2021年1月号がオンライン公開されました。あ…

第137回―「リンや硫黄を含む化合物の不斉合成法を開発する」Stuart Warren教授

第137回の海外化学者インタビューはスチュアート・ウォーレン教授です。ケンブリッジ大学化学科に所属し…

Chem-Station Twitter

PAGE TOP