[スポンサーリンク]

ケムステしごと

BASFとはどんな会社?-2

[スポンサーリンク]

前回の続き。ここ10年程度の主な研究成果をご紹介しましょう。

Tshozoです。皆さんはボスに叱られて不整脈になったことはありますか?私はあります。

前回に続き、BASFの研究成果・活動の一例、HPPO法による酸化プロピレン(PO:Propylene Oxide)の事業化についてご紹介します。他にもStrobilurin Aの合成や光学活性アミンの合成、イオン性液体の実用化など数多くあるのですが、ボリュームが大きくなるので今回はこれだけに留め、他はまた次の機会にご紹介します。

では無駄口たたかずガンガンいきます。

 

”HPPO法によるPOの新規合成法事業化(2008年・Dowと協業)”

POはプロピレンから合成される工業製品の中間体です。これを原料として出来るグリコール類やポリオール類は、塗膜や薄膜形成のための溶媒・不凍液・ポリウレタンモノマ(又は変性剤)・染色剤など多くの用途に使用されており、生分解性も比較的高いことから工業的に極めて重要な位置にあります。年間生産量は何と650万トンに達します。

BASF_11.PNG

POの主な材料展開先

 で、従来そのPOをどう合成していたか。工業的には主にA.プロピレンからクロロヒドリンを経由する合成方法 と、 B. スチレンモノマ-PO法 の2種類がありました。

BASF_12

従来のPO合成法・上がAで下がB

 これらの反応、実際には副生成物を多く発生させてしまうという問題を抱えていました。まずAは相当量の塩化カルシウム(CaCl2・重量比でPOの1.5倍)を発生しますし、Bは出来たスチレンが副生成物になります。

これに対し住友化学が2006年に中間体としてクメンを使用する方法を編み出しました。具体的には上記Bの左側のベンジルアルコールではなくクミルアルコールを使うものです。これを水素で還元後、Airで酸化させてクメンパーヒドロキシドを作り左側を回すプロセスを使っています(実は工業的にはこちらの住友化学の方が数十万トンレベルの量産に先鞭をつけました・しかし個人的にはクメンパーヒドロキシドが多段反応であるため、収率はそこまでよくないのではないかという気がします)。

これらの手法をさらに進化させ、より低コストでPOを供給するにはどうすればよいか、という要求に応えたのがBASFがDowと協業で完成させたHPPO法(過酸化水素法)でした。

BASF_13.PNG

HPPO合成法・理屈上は出る生成物が水だけ!

反応温度も30~80℃とマイルド、ただし圧力はなぜか10~30barの低圧のもよう

 これを実現したのは、BASFが誇る触媒技術です。チタンシリケート系不均一触媒を用いて、下記のようなスキームで推定される反応によりPOを合成しています。この反応は以前からよく知られていたようですが、実際の転化率は50%程度と低かったために採用されていなかったとのことです。BASFは触媒を工夫することでこの転化率を90%以上に引き上げ(95%以上とも言われます)、実用化にこぎつけました。

BASF_14

HPPO合成法のメカニズム・メタノールが重要な役割を果たしている

 上図のメカニズムを解明しているとすると、副反応が出難いようにエンジニアリング上の工夫をしている可能性が高いです。

ただプロセスとしてはまだまだ未完成で、安定供給できる過酸化水素プラントを真横に作らなければならんので投資コストが高いとか(本件はDowのほか、過酸化水素最大手のSolvayも巻き込んでます。本反応は安価な過酸化水素が供給されないとコスト競争力が低くなりますので、過酸化水素の価格決定力を持つSolvayを巻き込むのは当然の判断なのでしょう)、水に溶解したメタノールの分離に熱やスチームを大量に消費するとか下記のような副反応を起こすなどの問題を抱えています。

これらの点は先に挙げた住友化学でも同様の問題を抱えていると思われ、どちらがより単純な系でスケールメリットを以って廉価なPOを供給できるのか、というところの戦いになると思われます。正直技術的にはレベルがいずれも高く、優劣つけ難い勝負になるのではないかと予想しています。

 BASF_15.PNG

生じる副反応・特に過酸化水素があるせいで不可避的に発生する

真ん中の反応が厄介と思われる

 ということで今回はここまで。次回はよりBASFらしい研究成果である、イオン性液体について取り上げます。

【注 ・・・華々しく事業化されたこのHPPO法ですが、欧州地域はともかくアジア地域においてBASFは協業のDowと「地域ごとの生産量・供給量と取り分」に関し同意に至らなかったため、プロジェクトから手を引くという決断を下しています。ここらへんはビジネスとしての厳しさ、ということでしょう】

●今回の参考スライド:こちらです

Tshozo

Tshozo

投稿者の記事一覧

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. これからの理系の転職について考えてみた
  2. もし新元素に命名することになったら
  3. 私がケムステスタッフになったワケ(1)
  4. 第98回日本化学会春季年会 付設展示会ケムステキャンペーン Pa…
  5. 3Dプリント模型を買ってコロナウイルス研究を応援しよう!
  6. シス型 ゲラニルゲラニル二リン酸?
  7. アンモニアの安全性あれこれ
  8. モノクローナル抗体を用いた人工金属酵素によるエナンチオ選択的フリ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 日本学士院賞・受賞化学者一覧
  2. 化学における特許権侵害訴訟~特許の真価が問われる時~
  3. ステファン・カスケル Stefan Kaskel
  4. 全合成 total synthesis
  5. Qi-Lin Zhou 周其林
  6. 製薬業界の現状
  7. 村橋 俊一 Shunichi Murahashi
  8. シラフルオフェン (silafluofen)
  9. ヘリウム不足再び?
  10. 一家に1枚周期表を 理科離れ防止狙い文科省

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年9月
« 8月   10月 »
 12
3456789
10111213141516
17181920212223
24252627282930

注目情報

注目情報

最新記事

新型コロナの飲み薬モルヌピラビルの合成・生体触媒を用いた短工程化

新型コロナウイルス (SARS-CoV-2) 感染症に対する飲み薬として、Merck…

秋吉一成 Akiyoshi Kazunari

秋吉 一成(あきよしかずなり)は日本の有機化学者である。京都大学大学院 工学研究科 高分子化学専攻 …

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

吉野彰氏が2021年10月度「私の履歴書」を連載。

今年の10月はノーベル化学賞が有機化学分野から出て、物理学賞を真鍋淑郎先生が受賞して、非常に盛り上が…

ガラス工房にお邪魔してみたー匠の技から試験管制作体験までー

実験器具を試して見たシリーズ第10弾! ついにシリーズ10回目を迎えました。今回は特別編です…

ダイセルよりサステナブルな素材に関する開発成果と包括的連携が発表される

株式会社ダイセルは、環境にやさしい酢酸セルロースを当社独自の技術で加工した真球状微粒子を開発し、20…

市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナノグラフェンの多様性指向型合成が可能に〜

第345回のスポットライトリサーチは、北海道大学大学院理学研究院 理論化学研究室(前田・高橋研究室)…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP