[スポンサーリンク]

化学者のつぶやき

化学は地球を救う!

Figure0701-1.jpg

 夏も近づき暑くなるにつれて、毎年のように「地球温暖化の影響」があちこちで囁かれるようになりました。実際に日本沿岸では海水面が毎年3.3 mmずつ上昇しているそうです(Wikipedia「地球温暖化」参照)。

 地球温暖化の主な原因は「温室効果ガス(greenhouse gas)」であるとされており、特にメタン(CH4)や二酸化炭素(CO2)の排出量が大きく影響することが示されています。これらの気体分子は大気中で非常に安定であり、反応性が限られる(分解されにくい)ことが問題を大きくしていると言われています。

 

以前「つぶやき」では、NHC(N-ヘテロサイクリックカルベン)を有機分子触媒として用いると、CO2を活性化できるという報告を紹介しました(「つぶやき」での紹介記事はこちら)。すなわち簡単な有機分子を用いることでCO2を無害な(むしろ有用な)メタノールへと変換する、というコンセプトでした。

 

さらに最近、この研究に関連して、地球温暖化に待ったをかける(と言ってしまうのは大袈裟かもしれませんが)、画期的な研究成果が J. Am. Chem. Soc. 誌及びAngew. Chem. Int. Ed. 誌に報告されたので紹介します。


Figure0701-2.gif

Complexation of Nitrous Oxide by Frustrated Lewis Pairs
Otten, E.; Neu, R. C.; Stephan, D. W.
J. Am. Chem. Soc. 2009, ASAP. doi:10.1021/ja904377v

Figure0701-3.gif

 

Reversible Metal-Free Carbon Dioxide Binding by Frustrated Lewis Pairs
Momming, C. M.; Otten, E.; Kehr, G.; Frohlich, R.; Grimme, S.; Stephan,D. W.; Erker, G.
Angew. Chem. Int. Ed. 2009, Early View. doi:10.1002/anie.200901636

 

いずれの研究もカナダのトロント大学のStephan, D. W. 教授らのグループが中心になっています。Stephan教授は「Frustrated Lewis Pairs(以下FLPs)」に関する化学の第一人者です。

 

 Lewis Pairsとはつまりルイス酸とルイス塩基の両方の機能を併せ持つ分子のこと。配位子としての利用や触媒能について精力的な研究がなされてきました。その結果、ルイス酸-塩基中心が同時に二つの反応基質を活性化して、触媒能を示すことも明らかとなっていました。しかしながら、これらの化合物を触媒として働かせるためには、ルイス酸とルイス塩基部位同士が相互作用してしまう、いわゆるクエンチ反応を防ぐことが課題でした。

 

Stephan教授は、「  B(ボラン)及び  P(ホスフィン)」を組み合わせた「Lewis Pairs」に着目していました。さらに前述の問題を解決するために「嵩高い置換基を導入」して、ボラン-ホスフィン間での配位を防ぎました。このようにして「Frustrate」されたFLPsは、なんと水素分子をもヘテロリティックに解裂させることができます(下図参照)。

 

 

Figure0701-4.gif

 

Reversible Metal-Free Hydrogen Activation
Welch, G. C.; Juan, R. R. S.; Masuda, J. D.; Stephan, D. W.
Sience 2006, 314, 1124. doi:10.1126/science.1134230

 また得られたFLPs-水素付加体は、C=N(イミン)やC≡N(ニトリル)を触媒的に還元することが可能です『遷移金属を用いることなく触媒的水素化反応を可能にした』という点で、グリーンケミストリーの立場からも高く評価されています。

 今回の研究成果は、これらの研究の発展型で「FLPsは温室効果ガスとして知られるCO2やN2Oをも活性化できた」というものです。これまでにも遷移金属錯体を用いてCO2やN2Oを活性化するという報告例はありました。しかしながら典型元素のみからなる中性分子が、室温下、1 bar程度の圧力の気体と反応するという例は非常に珍しいと言えます。
 
 ただし、このような分子・反応系が設計できたからと言って、温暖化解決に直結するかと言えばそう簡単な話ではないと思います。しかしながら、基礎化学的な知見の積み重ねの上に応用があるという事実はいつの時代も変わりません。数十年後か数百年後かわかりませんが、これらの成果をヒントとして生まれた技術が利用されることを期待したいものです。
 実用化に至らないまでも、基礎化学的な観点からも興味深い結果であるのは間違いありません。これほどまでにシンプルな系で、新しい概念を生み出したという点には感動すら覚えます。今後FLPsを用いてあらゆる結合の切断・分子変換が可能になれば、地球を救うことはできなくとも有機化学の可能性は確実に広がるはずです。

 

 研究においては、どのようなコンセプトを持って進めていくかという姿勢が重要であると思います。それは論文発表でも口頭発表でも、まず最初に目に(耳に)する「Introduction」に凝縮されています。賛否両論あるとは思いますが、駆け出しの研究者である筆者にとっては少々大袈裟なイントロのほうがおもしろいと感じることも少なくありません。今回紹介した論文がそうであるように、「こんなにも夢のある化合物ですよ」という前置きがあると取っ付きやすいのは間違い有りません。

 

それらを踏まえて今回のブログの記事のタイトルを決めましたが、いかがでしょうか?

大袈裟なタイトルに引き付けられた人が多少なりともいてもらえれば幸いです。

 

  • 関連論文
    [1] Rokob, T. A.; Hamza, A.; Papai, I. J. Am Chem. Soc. 2009, ASAP. doi:10.1021/ja903878z
  • 関連リンク
    Stephan Research Group(トロント大学 ステファン研究室HP)
The following two tabs change content below.
トリプチセン

トリプチセン

博士見習い。専門は14族を中心とした有機典型元素化学。 ・既存の有機化学に新しい風を! ・サイエンスコミュニケーションの普及と科学リテラシーの構築! これらの大きな目標のため

関連記事

  1. フリーラジカルの祖は一体誰か?
  2. 既存の農薬で乾燥耐性のある植物を育てる
  3. NMR が、2016年度グッドデザイン賞を受賞
  4. CO2の資源利用を目指した新たなプラスチック合成法
  5. 前人未踏の超分子構造体を「数学のチカラ」で見つけ出す
  6. スイスの博士課程ってどうなの?2〜ヨーロッパの博士課程に出願する…
  7. リガンド結合部位近傍のリジン側鎖をアジド基に置換する
  8. 知られざる有機合成のレアテク集

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 塩谷光彦 Mitsuhiko Shionoya
  2. 和製マスコミの科学報道へ不平不満が絶えないのはなぜか
  3. ケムステ版・ノーベル化学賞候補者リスト【2017年版】
  4. 「化学の日」はイベント盛り沢山
  5. 三共と第一製薬が正式に合併契約締結
  6. 渡辺芳人 Yoshihito Watanabe
  7. 硫黄配位子に安定化されたカルボンの合成
  8. アミノ酸「ヒスチジン」が脳梗塞に有効――愛媛大が解明
  9. グリニャール反応 Grignard Reaction
  10. シロアリの女王フェロモンの特定に成功

関連商品

注目情報

注目情報

最新記事

リチウムイオン電池の課題のはなし-1

Tshozoです。以前リチウムイオン電池に関するトピックを2つほど紹介した(記事:リチウムイ…

アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

2015年、プリンストン大学・D. W. C. MacMillanらは、水素移動触媒(HAT)および…

三種類の分子が自発的に整列した構造をもつ超分子共重合ポリマーの開発

第123回のスポットライトリサーチは、テキサス大学オースティン校博士研究員(Jonathan L. …

超分子化学と機能性材料に関する国際シンポジウム2018

「超分子化学と機能性材料に関する国際シンポジウム2018」CEMS International Sy…

アメリカで Ph. D. を取る –研究室に訪問するの巻–

この連載は、米国の大学院で Ph.D. を取得することを目指す学生が日記感覚で近況を記録するためのも…

光触媒ラジカルカスケードが実現する網羅的天然物合成

四川大学のYong Qinらは、可視光レドックス触媒によって促進される窒素ラジカルカスケード反応によ…

Chem-Station Twitter

PAGE TOP