[スポンサーリンク]

スポットライトリサーチ

プラスチックに数層の分子配向膜を形成する手法の開発

第135回のスポットライトリサーチは、東京大学大学院 工学研究科(染谷 隆夫 教授)の横田 知之 講師を紹介します。
染谷研究室は、有機エレクトロニクスの分野で世界的に大変著名な研究室です。中でもフレキシブル有機デバイスの開発に精力的に取り組まれており、それらのデバイスや合成技術を医療やヘルスケアの分野へ応用させることにも着手されています。

染谷研究室ではこれまで、アルミ酸化膜と自己組織化単分子膜(SAM)を用いることによって低電圧駆動可能な有機トランジスタや集積回路などが開発されてきました。一方でアルミ酸化膜はプラスチックなどのポリマー材料と比べて硬く、柔軟性に欠けるという問題がありました。今回横田講師らは、東京工業大学(福島 孝典 教授)大阪大学 産業科学研究所(関谷 毅 教授)、理化学研究所、ヨハネスケプラー大学の研究グループらと共同して研究を行うことで、ポリマー材料を含む多種多様な基板上で分子膜を形成させる手法の開発に成功しました。

Tomoyuki Yokota*, Takashi Kajitani, Ren Shidachi, Takeyoshi Tokuhara, Martin Kaltenbrunner, Yoshiaki Shoji, Fumitaka Ishiwari, Tsuyoshi Sekitani, Takanori Fukushima*, Takao Someya*

”A Few-Layer Molecular Film on Polymer Substrates to Enhance the Performance of Organic Devices”

Nature Nanotechnology, 2017   doi:10.1038/s41565-017-0018-6

本研究はプレスリリースとしても発表されています。

染谷教授から横田講師に対するメッセージをいただきました。

いつも物静かで、にこやかで、落ち着いて、そして謙虚であるため、初めて会って少し話したくらいでは、横田さんが大いなる闘志を内に秘めた研究者であることに気が付く人はほとんどいません。極薄の有機ELを使ったスキンディスプレイや世界最高感度のフレキシブル体温計など世界が驚く成果を連発するアイディアや集中力は一体どこから来るのでしょうか。どんな困難に直面してもへこたれないのは、きっと人よりも一段高いところを見ているからだと思います。横田さんと共同研究ができて、私は本当に幸せ者です。

染谷 隆夫

ぜひ原著論文と合わせて、インタビューをお楽しみください。

Q1. 今回のプレスリリース対象となったのはどんな研究ですか?

本研究では、プラスチックの上に数層の分子配向膜を実現し、有機デバイスの特性を向上させることに成功しました

従来の技術では、金属酸化膜や金属上には自己組織的に単分子が配向する自己組織化単分子膜(SAM)を用いることで配向膜を形成することができました。しかしながら、プラスチック上にはSAMを形成することが困難でした。我々はこの問題を解決するために、3枚羽プロペラ状の分子であるトリプチセン(*)を用いることで、フィルム基板上に二次元に配向した膜を形成することに成功しました。このような配向膜上に有機半導体を形成することで、有機半導体の結晶性を向上させることができ、デバイスの特性を向上させることに成功しました。

*このトリプチセン誘導体についてはケムステ過去紹介記事(センチメートルサイズで均一の有機分子薄膜をつくる!”シンプル イズ ザ ベスト”の極意)ならびに原著論文をご参照ください。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本研究では、トリプチセン材料用いることで下記を実現することができました。 

①様々な基板上への表面修飾技術の確立

蒸着法、塗布法のいずれでも成膜可能なため、様々な基板上に成膜することが可能です。

②基板の特性に依らずに表面状態を制御可能

酸化膜、フィルム基板の種類に依らず、トリプチセン膜を成膜することで表面の特性を制御することができました。

③有機集積回路の特性向上

トリプチセンをポリマー絶縁膜上に成膜することで、有機デバイスをわずか0.8 Vで駆動させることに成功しました。この時の動作速度は、従来のアルミ酸化膜とSAMを用いたデバイスとほぼ同等でした。 

このように、今回の研究は今後の有機エレクトロニクスの発展に大きな貢献をすることができると期待しております。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

今回の研究では、デバイスの特性や表面状態を丁寧に評価することが特に難しかったです。

もともと物性に関する研究が好きだったのですが、学生時代は有機デバイスを用いた応用に関する研究をメインに行ってきました。そのためこれまでの研究とは違い、根気強く研究を行う必要がありました。また測定したデータをどのように解釈するかを考えるのに多くの時間を使いました。自分の性格である忍耐強さでこの点は、何とか乗り切ることができました。

Q4. 将来は化学とどう関わっていきたいですか?

現在は電気系工学専攻に所属していますが、もともと高校時代は数学と化学が一番好きでした。応用と物性の両方を研究していることが自分の強みですので、他の研究者にはできないような研究をしていきたいと思います。応用の点から材料開発などができればと思います。また、いつかは数学もそこに絡めることができたら幸せです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

研究ではすぐには結果が出ないことも多いと思いますが、あきらめずにいればいつか花開くことがあると思います。実際に、私の研究はプロジェクトを開始してから3年くらいで花開くことがほとんどです。成果が2年くらい出ないこともよくありました。それでも安易に逃げの研究を行うのではなく、自分の独創性を発揮するような攻めの研究を是非行ってください。若い時に失敗からいろいろ学ぶことをお勧めします。

研究者の略歴

手にフレキシブルな有機発光素子(OLED)を貼っている様子

名前:横田 知之(よこた ともゆき)

博士(工学)、東京大学講師

1985年4月、栃木県生まれ。東京大学卒業(2008年3月)。東京大学博士後期課程修了(2013年3月)。東京大学特任助教(2013年4月–2015年3月)を経て2015年4月より現職。フレキシブルエレクトロニクスのデバイス応用と物性の両面からの研究に従事している。趣味は数学とランニング。

関連記事

  1. 超微量紫外可視分光光度計に新型登場:NanoDrop One
  2. 世界初!反転層型ダイヤMOSFETの動作実証に成功
  3. 緑色蛍光タンパク質を真似してRNAを光らせる
  4. ニッケル錯体触媒の電子構造を可視化
  5. 結晶世界のウェイトリフティング
  6. 化学者も参戦!?急成長ワクチン業界
  7. 芳香環メタ位を触媒のチカラで狙い撃ち
  8. 学振申請書を磨き上げる11のポイント [文章編・後編]

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 浜地 格 Itaru Hamachi
  2. トリフェニル-2,6-キシリルビスムトニウムテトラフルオロボラート:Triphenyl-2,6-xylylbismuthonium Tetrafluoroborate
  3. 抗体結合ペプチドを用いる非共有結合的抗体-薬物複合体の創製
  4. C-H結合活性化を経るラクトンの不斉合成
  5. シェンヴィ イソニトリル合成 Shenvi Isonitrile Synthesis
  6. 170年前のワインの味を化学する
  7. フェイスト・ベナリー フラン合成 Feist-Benary Furan Synthesis
  8. 第23回 医療、工業、軍事、広がるスマートマテリアル活躍の場ーPavel Anzenbacher教授
  9. むずかしいことば?
  10. 第30回「化学研究の成果とワクワク感を子供たちにも伝えたい」 玉尾皓平教授

関連商品

注目情報

注目情報

最新記事

研究者向けプロフィールサービス徹底比較!

研究者にとって、業績を適切に管理しアピールすることは重要です。以前にも少し触れましたが、科研費の審査…

天然有機化合物の全合成:独創的なものづくりの反応と戦略

概要生物活性天然有機化合物(天然物)は生命の40億年にわたる進化によって選択された高機能分子…

細菌を取り巻く生体ポリマーの意外な化学修飾

地球上に最もたくさんある有機化合物は何でしょう?それは、野菜や果物、紙、Tシャツ、木材、etc…身の…

有機分子触媒ーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

研究職の転職で求められる「面白い人材」

ある外資系機器メーカーのフィールドサービス職のポジションに対して候補者をご推薦しました。その時のエピ…

「不斉有機触媒の未踏課題に挑戦する」—マックス・プランク石炭化学研究所・List研より

「ケムステ海外研究記」の第18回目は、マックス・プランク石炭化学研究所(Benjamin List研…

Chem-Station Twitter

PAGE TOP