[スポンサーリンク]

スポットライトリサーチ

プラスチックに数層の分子配向膜を形成する手法の開発

[スポンサーリンク]

第135回のスポットライトリサーチは、東京大学大学院 工学研究科(染谷 隆夫 教授)の横田 知之 講師を紹介します。
染谷研究室は、有機エレクトロニクスの分野で世界的に大変著名な研究室です。中でもフレキシブル有機デバイスの開発に精力的に取り組まれており、それらのデバイスや合成技術を医療やヘルスケアの分野へ応用させることにも着手されています。

染谷研究室ではこれまで、アルミ酸化膜と自己組織化単分子膜(SAM)を用いることによって低電圧駆動可能な有機トランジスタや集積回路などが開発されてきました。一方でアルミ酸化膜はプラスチックなどのポリマー材料と比べて硬く、柔軟性に欠けるという問題がありました。今回横田講師らは、東京工業大学(福島 孝典 教授)大阪大学 産業科学研究所(関谷 毅 教授)、理化学研究所、ヨハネスケプラー大学の研究グループらと共同して研究を行うことで、ポリマー材料を含む多種多様な基板上で分子膜を形成させる手法の開発に成功しました。

Tomoyuki Yokota*, Takashi Kajitani, Ren Shidachi, Takeyoshi Tokuhara, Martin Kaltenbrunner, Yoshiaki Shoji, Fumitaka Ishiwari, Tsuyoshi Sekitani, Takanori Fukushima*, Takao Someya*

”A Few-Layer Molecular Film on Polymer Substrates to Enhance the Performance of Organic Devices”

Nature Nanotechnology, 2017   doi:10.1038/s41565-017-0018-6

本研究はプレスリリースとしても発表されています。

染谷教授から横田講師に対するメッセージをいただきました。

いつも物静かで、にこやかで、落ち着いて、そして謙虚であるため、初めて会って少し話したくらいでは、横田さんが大いなる闘志を内に秘めた研究者であることに気が付く人はほとんどいません。極薄の有機ELを使ったスキンディスプレイや世界最高感度のフレキシブル体温計など世界が驚く成果を連発するアイディアや集中力は一体どこから来るのでしょうか。どんな困難に直面してもへこたれないのは、きっと人よりも一段高いところを見ているからだと思います。横田さんと共同研究ができて、私は本当に幸せ者です。

染谷 隆夫

ぜひ原著論文と合わせて、インタビューをお楽しみください。

Q1. 今回のプレスリリース対象となったのはどんな研究ですか?

本研究では、プラスチックの上に数層の分子配向膜を実現し、有機デバイスの特性を向上させることに成功しました

従来の技術では、金属酸化膜や金属上には自己組織的に単分子が配向する自己組織化単分子膜(SAM)を用いることで配向膜を形成することができました。しかしながら、プラスチック上にはSAMを形成することが困難でした。我々はこの問題を解決するために、3枚羽プロペラ状の分子であるトリプチセン(*)を用いることで、フィルム基板上に二次元に配向した膜を形成することに成功しました。このような配向膜上に有機半導体を形成することで、有機半導体の結晶性を向上させることができ、デバイスの特性を向上させることに成功しました。

*このトリプチセン誘導体についてはケムステ過去紹介記事(センチメートルサイズで均一の有機分子薄膜をつくる!”シンプル イズ ザ ベスト”の極意)ならびに原著論文をご参照ください。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

本研究では、トリプチセン材料用いることで下記を実現することができました。 

①様々な基板上への表面修飾技術の確立

蒸着法、塗布法のいずれでも成膜可能なため、様々な基板上に成膜することが可能です。

②基板の特性に依らずに表面状態を制御可能

酸化膜、フィルム基板の種類に依らず、トリプチセン膜を成膜することで表面の特性を制御することができました。

③有機集積回路の特性向上

トリプチセンをポリマー絶縁膜上に成膜することで、有機デバイスをわずか0.8 Vで駆動させることに成功しました。この時の動作速度は、従来のアルミ酸化膜とSAMを用いたデバイスとほぼ同等でした。 

このように、今回の研究は今後の有機エレクトロニクスの発展に大きな貢献をすることができると期待しております。

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

今回の研究では、デバイスの特性や表面状態を丁寧に評価することが特に難しかったです。

もともと物性に関する研究が好きだったのですが、学生時代は有機デバイスを用いた応用に関する研究をメインに行ってきました。そのためこれまでの研究とは違い、根気強く研究を行う必要がありました。また測定したデータをどのように解釈するかを考えるのに多くの時間を使いました。自分の性格である忍耐強さでこの点は、何とか乗り切ることができました。

Q4. 将来は化学とどう関わっていきたいですか?

現在は電気系工学専攻に所属していますが、もともと高校時代は数学と化学が一番好きでした。応用と物性の両方を研究していることが自分の強みですので、他の研究者にはできないような研究をしていきたいと思います。応用の点から材料開発などができればと思います。また、いつかは数学もそこに絡めることができたら幸せです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

研究ではすぐには結果が出ないことも多いと思いますが、あきらめずにいればいつか花開くことがあると思います。実際に、私の研究はプロジェクトを開始してから3年くらいで花開くことがほとんどです。成果が2年くらい出ないこともよくありました。それでも安易に逃げの研究を行うのではなく、自分の独創性を発揮するような攻めの研究を是非行ってください。若い時に失敗からいろいろ学ぶことをお勧めします。

研究者の略歴

手にフレキシブルな有機発光素子(OLED)を貼っている様子

名前:横田 知之(よこた ともゆき)

博士(工学)、東京大学講師

1985年4月、栃木県生まれ。東京大学卒業(2008年3月)。東京大学博士後期課程修了(2013年3月)。東京大学特任助教(2013年4月–2015年3月)を経て2015年4月より現職。フレキシブルエレクトロニクスのデバイス応用と物性の両面からの研究に従事している。趣味は数学とランニング。

めぐ

めぐ

投稿者の記事一覧

博士(理学)。大学教員。娘の育児に奮闘しつつも、分子の世界に思いを馳せる日々。

関連記事

  1. 韓国チームがiPS細胞の作製効率高める化合物を発見
  2. 有機反応を俯瞰する ーリンの化学 その 2 (光延型置換反応)
  3. カルボン酸を触媒のみでアルコールに還元
  4. アンモニアがふたたび世界を変える ~第2次世界大戦中のとある出来…
  5. ゴジラ級のエルニーニョに…出会った!
  6. 加熱✕情熱!マイクロ波合成装置「ミューリアクター」四国計測工業
  7. シュプリンガー・ジャパン:生化学会書籍展示ケムステ特典!
  8. 酵素合成と人工合成の両輪で実現するサフラマイシン類の効率的全合成…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. カルボプラチン /carboplatin
  2. 電子学術情報の利活用
  3. 理系のためのフリーソフト Ver2.0
  4. 高分子ってよく聞くけど、何がすごいの?
  5. 化学者だって数学するっつーの! :シュレディンガー方程式と複素数
  6. 韓国へ輸出される半導体材料とその優遇除外措置について
  7. E-mail Alertを活用しよう!
  8. 自由の世界へようこそ
  9. ピーター・ジーバーガー Peter H. Seeberger
  10. 【書籍】化学探偵Mr.キュリー5

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2018年1月
« 12月   2月 »
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

注目情報

最新記事

ダイセル発、にんにく由来の機能性表示食品「S-アリルシステイン」

株式会社ダイセルは、カラダの疲れを感じている方のための機能性表示食品「S-アリルシステイン」を消費者…

Delta 6.0.0 for Win & Macがリリース!

NMR解析ソフトDeltaの最新版6.0.0がリリースされました!&nb…

こんなのアリ!?ギ酸でヒドロカルボキシル化

可視光レドックス触媒によるギ酸を炭素源としたヒドロカルボキシル化が開発された。チオール触媒を介したラ…

ポンコツ博士研究員の海外奮闘録 ケムステ異色連載記

本稿は,世間一般にほとんど知られていない地方私立大学で学位を修了し,エリートでもなく何も成し遂げてい…

新型コロナの飲み薬モルヌピラビルの合成・生体触媒を用いた短工程化

新型コロナウイルス (SARS-CoV-2) 感染症に対する飲み薬として、Merck…

秋吉一成 Akiyoshi Kazunari

秋吉 一成(あきよしかずなり)は日本の有機化学者である。京都大学大学院 工学研究科 高分子化学専攻 …

NIMS WEEK2021-材料研究の最新成果発表週間- 事前登録スタート

時代を先取りした新材料を発信し続けるNIMS。その最新成果を一挙ご紹介する、年に一度の大イベント「N…

元素記号に例えるなら何タイプ? 高校生向け「起業家タイプ診断」

今回は化学の本質とは少し離れますが、元素をモチーフにしたあるコンテンツをご紹介します。実験の合間…

多価不飽和脂肪酸による光合成の不活性化メカニズムの解明:脂肪酸を活用した光合成活性の制御技術開発の可能性

第346回のスポットライトリサーチは、東京大学 大学院総合文化研究科(和田・神保研究…

10手で陥落!(+)-pepluanol Aの全合成

高度な縮環構造をもつ複雑天然物ペプラノールAの全合成が、わずか10工程で達成された。Diels–Al…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP