[スポンサーリンク]

スポットライトリサーチ

引っ張ると頑丈になる高分子ゲル:可逆な伸長誘起結晶化による強靭性と復元性の両立

[スポンサーリンク]

第328回のスポットライトリサーチは、東京大学 物性研究所の眞弓 皓一先生にお願いしました!!!!!

高分子やゲルに詳しい人、筋肉が好きな人はゲルの面白い研究として龔 剣萍教授ら鍛えるほど強度が増していく、筋肉のようなゲルが記憶に新しいと思います。今回紹介させていただく眞弓先生は、伸長下でゲルの高分子鎖を結晶化させることで、繰り返し変形下においてほぼ100%元の状態まで即座に復元する強靭性と復元性を両立した世界初のハイドロゲルを作成しました!!!!本成果はScience誌に掲載されており、プレスリリースでの和文解説のほか、TBS NEWS読売新聞オンラインなどのメディアで取り上げられています。

“Tough hydrogels with rapid self-reinforcement”
Science, 04 Jun 2021:Vol. 372, Issue 6546, pp. 1078-1081,  doi:10.1126/science.aaz6694

学生時代の指導教員であり、助教・特任講師時代の上司である伊藤耕三教授から、眞弓先生について以下のコメントを頂いていております!!!! 

 眞弓さんは、中性子・X線散乱法を用いたナノスケールの構造・ダイナミクス解析からマクロな力学・破壊物性測定までを一貫して行うことで、様々な高強度高分子材料の強靭化メカニズムを解明してきました。フランスESPCI ParisTechの博士研究員時代には、可逆結合を有する自己修復性高強度ゲルの普遍的な力学・破壊モデルを提唱して世界的な注目を集めました。その後、東京大学の私の研究室では、破壊特性評価手法を環動ゲルに適用することで、環動ゲルにおける環状架橋点のスライド運動と力学・破壊特性の相関を解明してくれました。

私の研究室では、眞弓さんは助教、特任講師として数多くの学生の指導に関わっていましたが、厳しさと優しさのメリハリをつけつつ、研究については学生の自主性を大事にしている印象でした。今回の高分子ゲルにおける伸長誘起結晶化の発見は、大学院生らが自主的に実験を進めている中で偶然取得したデータがきっかけとなっています。物性研究所で新しく立ち上げている研究室でも、高分子・ソフトマターの新しい可能性を開拓するような研究を展開して、今後益々活躍されることを祈念しています。

それでは、眞弓先生の力あふれるメッセージ、ご覧ください!!

Q1. 今回プレスリリースとなったのはどんな研究ですか!! 簡単にご説明ください!!

ハイドロゲルは高分子鎖が架橋された網目構造に水が閉じ込められた材料で、身近な例としてはゼリー、寒天、おむつの吸水剤などが挙げられます。水が主成分であることからハイドロゲルは生体適合性が高く、人工血管・関節・靭帯などの生体医療材料への応用が期待されながらも、力学的な強度が不足していることが問題でした。2000年代に入ってから、網目構造を工夫することで力学強度を飛躍的に高めた高強度ゲルが報告されるようになり、世界中で開発競争が繰り広げられています。従来の高強度ゲルで最も強靭性に優れたものは、犠牲結合と呼ばれる壊れやすい結合を導入した高分子ゲルで、変形させると犠牲結合が選択的に破断することで力学的エネルギーを散逸させ、極めて大きな破壊エネルギーを示します。しかし、変形下で壊れた結合は回復しないか、回復するとしても比較的長い時間を要するため、人工靭帯などで求められる繰り返し変形下での即時復元性に問題がありました。我々は、環状分子で高分子鎖が連結された環動ゲルにおいて、構造を最適化すると、伸長下で高分子鎖が結晶化すること(伸長誘起結晶化)を発見し、新しい強靭化機構を提案しました。高度に引き延ばされた高分子鎖が結晶化することで破断を回避することができ(自己補強効果)、また伸長を緩めると結晶は即座に消失することから、本ゲルは繰り返し変形下においてほぼ100%元の状態まで即座に復元します。自己補強ゲルは、強靭性と復元性を両立した世界初のハイドロゲルであり、人工靭帯・関節開発にブレークスルーをもたらすものです。

動画(初期亀裂を入れた環動ゲルの繰り返し引張の様子)

 

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください!!

この研究は、現場での偶然の発見がきっかけになっています。環動ゲルは伊藤耕三先生の研究室で20年程前に開発された高強度ゲルの1種です。環状分子からなる架橋点が高分子鎖上をスライドすることで応力が均一化され、その結果優れた強靭性を示すと考えられています。環状分子のスライドを促進するために、高分子鎖上に存在する環状分子の数を減らす研究をしていて、実際に従来の環動ゲルに比べて数倍程度の強靭化が達成されたのが2018年のことでした。その際に、現場では、高分子濃度を従来よりも少し上げた環動ゲルを作っていました。高分子濃度を上げるという実験は、どちらかというと環状分子のスライドを抑制してしまう可能性があるため、私自身は特に想定していなかったのですが、出てきた力学試験の結果が少し変わっていました。高分子濃度を若干上げることで強靭性はさらに増していて、しかも繰り返し変形下においてほとんどヒステリシスがありませんでした(極めて小さなヒステリシスはあって、それが伸長誘起結晶化に由来するものであることは後で分かりました)。犠牲結合ゲルでは、強靭性と復元性が相反することを肌感覚として知っていたこともあり、何か特異なことが起こっているように思いました。当時大学院生だった劉君がこの現象に興味を持って、SPring-8で引っ張った状態でのX線散乱測定を行ったところ、きれいな回折スポットが現れ、伸長することで高分子鎖が結晶化している現象を発見しました。いつも冷静な劉君が興奮していたことが印象的でした。

図1:結晶最適化した環動ゲルでは、伸長すると高分子鎖が高度に配向し結晶化する(伸長誘起結晶化)。変形を緩めると、形成された結晶は即座に消失し、ゲルはもとの状態に戻る。

 

Q3. 研究テーマの難しかったところはどこですか!! またそれをどのように乗り越えましたか!!

伸長誘起結晶化を発見した際に、これは面白い研究になると確信しましたが、当時のデータはまだ生まれたての赤ん坊のような状態で、従来の高強度ゲルと比較して優位性を示し、メカニズムを解明するまでには時間を要しました。最初に伸長誘起結晶化を発見した環動ゲルの強靭性は、最も強靭な高強度ゲルに比べると10分の1程度で、強靭性をアピールするには不十分でした。環状分子の数、高分子濃度、高分子鎖の長さといった環動ゲルの構造パラメータを再度見直すことで、復元性をほぼ100%に保ったまま、世界最高水準の強靭性を実現することに成功しました。あと、伸長下における結晶構造を観察するためには、溶媒の蒸発を防ぐためにオイル中での測定が必須となり、X線散乱測定用に液浸可能な伸長セルを特注で作製しました。

 

Q4. 将来は化学とどう関わっていきたいですか!!

私自身は、物理工学科の出身で、高分子・ソフトマター材料の構造解析や物性測定を専門としています。新しい材料が出てくるのは、新規物質の開発に取り組んでいる化学の現場からだと思っていまして、化学を専門とする皆様と連携することで、これまで世の中になかったような新規材料の創成に貢献していきたいと考えています。今回の研究も、環動ゲルという材料を舞台に、化学・材料を専門とする研究員や大学院生が、私自身は想定していなかった「高分子濃度を上げてみる」という実験を行ったことがきっかけになっています。私自身は、環動ゲルに限らず、あらゆる種類の高強度ゲルの力学物性に現場で触れてきたのですが、その経験が、今回のセレンディピティに気が付く上で役に立ちました。面白い物性の端緒をつかむことができれば、構造解析と物性測定からメカニズムを解明することは、私自身の専門分野になってきます。

 

Q5. 最後に、読者の皆さんにメッセージをお願いします!!

化学を専門とする皆様は、自らのアイデアで新しい分子、材料をデザインし、それを現実のものとするべく日々研究に取り組まれているのだと思います。苦労して新しく作った材料が思った通りの物性を示さないことも多いとは思うのですが、その中にキラリと光る顔がのぞくことがあるかもしれません。材料開発におけるイノベーションのきっかけは、新規分子に挑み続けている化学の現場から生まれてくるのではないかと思います。私自身も、自分の研究室の学生の皆さんや、共同研究者の化学者の皆様と対話する中で、これまでになかった新しい現象の発見に一つでも多く立ち会うことができればと思っています。

 

研究者の略歴

名前:眞弓 皓一
所属:東京大学 物性研究所
研究テーマ:高分子・ソフトマターにおける構造物性相関

 

略歴:
2011年9月 東京大学大学院 新領域創成科学研究科 物質系専攻 博士後期課程 修了
2012年4月 ESPCI ParisTech 博士研究員
2014年4月 東京大学大学院新領域創成科学研究科物質系専攻 助教
2018年3月 東京大学大学院新領域創成科学研究科物質系専攻 特任講師
2020年11月 東京大学物性研究所中性子科学研究施設 准教授

 

関連リンク

東京大学物性研究所 眞弓研究室ホームページ
プレスリリース:引っ張ると頑丈になる自己補強ゲル ~繰り返し負荷に耐えられる人工靭帯などへの応用に期待~
「鍛えて成長する材料」:力で共有結合を切断するとどうなる?そしてどう使う?

野口真司

投稿者の記事一覧

「国や地域を超えて格差なく化学を享受できる世界」の実現を目指す化学者。尊敬する化合物はTestosterone氏。将来の目標はJeff Seid選手になること。

関連記事

  1. イオンのビリヤードで新しい物質を開発する
  2. 2007年度ノーベル医学・生理学賞決定!
  3. 胃薬のラニチジンに発がん性物質混入のおそれ ~簡易まとめ
  4. 超原子価臭素試薬を用いた脂肪族C-Hアミノ化反応
  5. 化学クラスタ発・地震被害報告まとめ
  6. C&EN コラム記事 ~Bench & Cu…
  7. 光照射下に繰り返し運動をおこなう分子集合体
  8. マテリアルズ・インフォマティクスの推進成功事例セミナー-なぜあの…

注目情報

ピックアップ記事

  1. ビス(ピリジン)ヨードニウムテトラフルオロボラート:Bis(pyridine)iodonium Tetrafluoroborate
  2. 第八回 自己集合ペプチドシステム開発 -Shuguang Zhang 教授
  3. アンドレアス ファルツ Andreas Pfaltz
  4. トリフルオロ酢酸パラジウム(II) : Trifluoroacetic Acid Palladium(II) Salt
  5. Corey系譜β版
  6. “呼吸するセラミックス” を使った酸素ガス分離・製造
  7. Arena/エーザイ 抗肥満薬ロルカセリンがFDA承認取得
  8. NMRの基礎知識【測定・解析編】
  9. 分子糊 モレキュラーグルー (Molecular Glue)
  10. 研究倫理問題について学んでおこう

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年8月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

ファンデルワールス力で分子を接着して三次元の構造体を組み上げる

第 656 回のスポットライトリサーチは、京都大学 物質-細胞統合システム拠点 (iCeMS) 古川…

第54回複素環化学討論会 @ 東京大学

開催概要第54回複素環化学討論会日時:2025年10月9日(木)~10月11日(土)会場…

クソニンジンのはなし ~草餅の邪魔者~

Tshozoです。昔住んでいた社宅近くの空き地の斜面に結構な数の野草があって、中でもヨモギは春に…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP