[スポンサーリンク]

化学者のつぶやき

発想の逆転で糖鎖合成

[スポンサーリンク]

糖鎖はたくさんの水酸基を含むため、その化学合成には保護基が欠かせません。保護基の利用は精密有機合成には不可欠ですが、保護、脱保護のために全体のステップが多くかかってしまいます。発想を逆転し、保護基を大きく減らした糖鎖の化学合成を紹介します。


糖鎖はタンパク質、核酸と並ぶ重要な生体高分子ですが、その化学合成には非常に手間と時間がかかってしまいます。
通常、糖鎖の合成は①望みの立体を持ち、適切に保護された単糖のビルディングブロックを合成し、それらを②グリコシル化反応によって連結していきます。最後に③すべての保護基を除くことで合成は完了します。

 

①の「適切に保護」というのがなかなかに厄介です。性質の似た複数の水酸基を識別し、②のグリコシル化反応に関わる水酸基だけをフリーにしておかなければいけません。これに多段階の保護、脱保護が必要となり、望みのビルディングブロックを得るだけでもかなり多くのステップが必要になってしまいます。
糖鎖の合成は多くの場合、保護基のオンパレードで、合成のほとんどのステップが保護基の掛けかえが占める、ということも少なくありません。

 

 

水酸基が邪魔なら無くせばいいじゃん!

Ravula Satheesh Babu, Qian Chen, Sang-Woo Kang, Maoquan Zhou, George A. O’Doherty

J. Am. Chem. Soc. 2012, 134, 11952-11955.
DOI: 10.1021/ja305321e

筆者らは、保護基の使用を抑えた糖鎖の化学合成を報告しました。水酸基を持たないビルディングブロックを用いて、まずグリコシル化反応を行い糖鎖の骨格を形成し、その後に水酸基を一挙に導入しています。従来のように「保護した糖を連結し、脱保護する」のではなく、いわば「連結してから糖にする」という戦略で水酸基の取扱いを最小限に抑えています。

2015-10-02_01-11-30

 

ビルディングブロックをPd触媒を用いたジアステレオ選択的グリコシル化反応によって連結しています。このとき、ドナー側の4位はカルボニル基になっており、グリコシル化の後に還元されることで、次のグリコシル化反応のアクセプターとなります。得られたトリマーの3つのC=C二重結合をOs触媒によって一挙に酸化し、6つの水酸基を立体選択的に導入しています。用いた保護基はなんとベンジル基一つだけ
また、ビルディングブロックはAchmatowicz反応によってアシルフランから4段階で合成しています。不斉点は野依触媒によって導入しているため、逆の立体の触媒を用いることでL体とD体の両方を合成することができます。筆者らは実際にD-ラムノースとL-ラムノースからなる三糖DDL、DLD、DLLの三種を合成しています。さらにマンノースを含む枝分かれのある三糖の合成にも成功しています。

ちなみにL-ラムノースの環状オリゴマーはシクロアワオドリンとして知られています。報告されているシクロアワオドリンの合成では、ビルディングブロックは無保護のラムノースから10段階で合成されています。

 

保護基を減らした今回の報告は、短工程であるだけでなく、アトムエコノミーの面でも非常に効率が高いといえます。しかし現段階ではラムノースとマンノースに限られており、より多様な単糖をふくむ複雑な糖鎖の合成には適用できません。適用範囲が広がれば糖鎖のライブラリー合成にも応用できそうです。今後の展開が非常に楽しみです。

 

関連書籍

[amazonjs asin=”4882314967″ locale=”JP” title=”糖鎖化学の最先端技術 (バイオテクノロジーシリーズ)”]

 

Grossstein

投稿者の記事一覧

ドイツでポスドクをしています。学生時代は分子触媒化学、今は糖鎖の合成を研究しています。夢はもちろんビール職人。目指せマイスター!

関連記事

  1. 648個の誘導体を合成!ペプチド創薬の新手法を開発
  2. アクリルアミド類のanti-Michael型付加反応の開発ーPd…
  3. 「人工金属酵素によるSystems Catalysisと細胞内触…
  4. 特許情報から読み解く大手化学メーカーの比較
  5. ビニル位炭素-水素結合への形式的分子内カルベン挿入
  6. タンパク質を華麗に模倣!新規単分子クロリドチャネル
  7. Carl Boschの人生 その2
  8. 第57回若手ペプチド夏の勉強会

注目情報

ピックアップ記事

  1. カバチニク・フィールズ反応 Kabachnik-Fields Reaction
  2. 触媒討論会に行ってきました
  3. 「超分子ポリマーを精密につくる」ヴュルツブルク大学・Würthner研より
  4. 東芝:新型リチウムイオン電池を開発 60倍の速さで充電
  5. 招福豆ムクナの不思議(6)植物が身を護る化学物資
  6. フィリップ・イートン Phillip E. Eaton
  7. 色の変わる分子〜クロミック分子〜
  8. TMSClを使ってチタンを再生!チタン触媒を用いたケトン合成
  9. 2010年ノーベル化学賞予想―トムソン・ロイター版
  10. テストには書けない? カルボキシル化反応の話

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年10月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

【11月開催】 【第二期 マツモトファインケミカル技術セミナー開催】 題目:アクリル含浸樹脂 ビステックスシリーズのご紹介

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物の“オルガチッ…

【日産化学 27卒/Zoomウェビナー配信!】START your ChemiSTORY あなたの化学をさがす 研究職限定 キャリアマッチングLIVE

3日間で12領域の研究職社員がプレゼンテーション!日産化学の全研究領域を公開する、研…

hERG阻害 –致死性副作用をもたらす創薬の大敵–

創薬の臨床試験段階において、予期せぬ有害事象 (または副作用) の発生は、数十億円以…

久保田 浩司 Koji Kubota

久保田 浩司(Koji Kubota, 1989年4月2日-)は、日本の有機合成化学者である。北海道…

ACS Publications主催 創薬企業フォーラム開催のお知らせ Frontiers of Drug Discovery in Japan: ACS Industrial Forum 2025

日時2025年12月5日(金)13:00~17:45会場大阪大学産業科学研究所 管理棟 …

【太陽ホールディングス】新卒採用情報(2027卒)

■■求める人物像■■「大きな志と好奇心を持ちまだ見ぬ価値造像のために前進できる人…

欧米化学メーカーのR&D戦略について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、欧米化…

有馬温泉でラドン泉の放射線量を計算してみた【化学者が行く温泉巡りの旅】

有馬温泉は、日本の温泉で最も高い塩分濃度を持ち黄褐色を呈する金泉と二酸化炭素と放射性のラドンを含んだ…

アミンホウ素を「くっつける」・「つかう」 ~ポリフルオロアレーンの光触媒的C–Fホウ素化反応と鈴木・宮浦カップリングの開発~

第684回のスポットライトリサーチは、名古屋工業大学大学院工学研究科(中村研究室)安川直樹 助教と修…

第56回ケムステVシンポ「デバイスとともに進化する未来の化学」を開催します!

第56回ケムステVシンポの会告を致します。3年前(32回)・2年前(41回)・昨年(49回)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP