[スポンサーリンク]

化学者のつぶやき

目指せPlanar!反芳香族性NIR色素の開発

[スポンサーリンク]

ジチエノアゼピンを主骨格とした反芳香族性のNIR色素が開発された。チエノ縮環と電子受容性基によるアゼピン環の平面化に伴う反芳香族性の獲得が近赤外領域での光学特性発現の鍵である。

NIR色素の分子設計

近赤外線領域(700–2500 nm)に吸収/蛍光特性を示すNIR色素(near-infrared dye)は、光エレクトロニクス分野や生命科学研究での応用に大きな可能性を秘めている色素である[1]。NIR色素は近赤外領域での光学特性を獲得するために様々な分子設計が報告されており、代表例としてドナー–p–アクセプター型、拡張PAH (polycyclic aromatic hydrocarbon)型、ポリメチン型が挙げられる[2]。これらの分子設計の多くは、HOMO–LUMOギャップを狭くするために長いp共役系をもつ。

今回、名古屋大学の村井准教授と山口教授らは新たな分子設計に基づくNIR色素の開発を試みた。具体的には、長いp共役系に代わり、狭いHOMO–LUMOギャップをもつ反芳香族性分子を利用した分子設計である。主骨格として反芳香族性をもちうる8p電子系のアゼピンに着目した(図1B)。しかし、アゼピンは不安定であり、ベンゼン環を縮環させたジベンゾ[b,f]アゼピンとしなければ安定に取り扱うことはできない[3]。だが、ジベンゾ[b,f]アゼピン中のアゼピン環は屈曲しており反芳香族性ではなく非芳香族性をもつ[4]。アゼピン骨格に反芳香族性を付与するため、著者らはベンゾ縮環をチエノ縮環としたジチエノ[b,f]アゼピンの両端に電子受容性基をもつ分子Aを設計した。ジチエノアゼピン誘導体Aは、キノイド型の共鳴の寄与により、理想的なアゼピン環がもちうる反芳香族性には劣るものの、平面構造となることで反芳香族性を獲得しうる。したがってAは、反芳香族性に起因する狭いHOMO–LUMOギャップから近赤外領域での光学特性が期待できる。

図1. (A) NIR色素の分子設計の代表例 (B) ジチエノアゼピンを主骨格としたNIR色素の分子設計

 

Dithienoazepine-Based Near-Infrared Dyes: Janus-Faced Effects of a Thiophene-Fused Structure on Antiaromatic Azepines

Murai, M.; Enoki, T.; Yamaguchi, S.Angew. Chem., Int. Ed. 2023, e202311445.

DOI: 10.1002/anie.202311445

論文著者の紹介

研究者:Shigehiro Yamaguchi (山口茂弘)

研究者の経歴:

1991–1993M.S., Kyoto University, Japan (Prof. Yoshihiko Ito)
1993–1997Research assistant, Institute for Chemical Research, Kyoto University, Japan
Ph.D., Kyoto University, Japan (Prof. Kohei Tamao)
2000–2001     Visiting Scholar, Massachusetts Institute of Technology, USA (Prof. Timothy M. Swager)
2003–2005     Associate professor, Graduate School of Science, Nagoya University, Japan
2005–                 Professor, Graduate School of Science, Nagoya University, Japan
2012–                 Professor, Research Center for Materials Science (RCMS), Nagoya University, Japan
2013–                 Professor, Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Japan
2014–Deputy director, ITbM, Nagoya University, Japan
2017–                 Director, RCMS, Nagoya University, Japan
研究内容:特異な光物性と電子物性をもつ機能性p電子系分子の創出

研究者:Masahito Murai (村井征史)

研究者の経歴:
2005–2007     M.S., Kyoto University, Japan (Prof. Tamejiro Hiyama)
2007–2010     Ph.D., Kyoto University, Japan (Prof. Kouichi Ohe)
2010–2012     JSPS Research Fellowship for Young Scientist PD, Tokyo Institute of
Technology, Japan (Prof. Munetaka Akita)
2011                    Postdoc, University of California, Santa Barbara, USA (Prof. Craig J. Hawker)
2012–2019Assistant professor, Graduate School of Natural Science and Technology, Okayama University,
Japan (Prof. Kazuhiko Takai)
2019–                 Associate professor, Graduate School of Science School of Science, Nagoya University, Japan
(Prof. Shigehiro Yamaguchi)

研究内容:配列制御されたイオン対による共役ソフトマテリアルの開発、5–7族金属触媒の反応開発

論文の概要

まず、著者らは前述の分子設計に基づくアゼピン色素の合成とその光学特性の解析に着手した。彼らは電子受容性基(EA: (Z)-CH=C(CN)(4-CNC6H4))をもつジチエノアゼピン誘導体1を合成した(図2A)。X線構造解析より、アゼピン環の内角の和(898°)が正七角形の内角の和(900°)に近いため、1は平面に近い構造であることが明らかとなった。また、ジチエノアゼピン骨格において結合長交替が見られないことから、キノイド型の共鳴構造の寄与が示唆された。1の光学測定から(極大吸収波長: 709 nm、極大蛍光波長: 746 nm)、1は仮説通り近赤外線領域に光学特性をもつNIR色素であることが確かめられた(図2B)。また、ベンゾ縮環体2はチエノ縮環体1よりも極大吸収波長と極大蛍光波長の差が大きく、これはそれぞれの基底状態での分子構造に由来する(詳しくは論文を参照)。

続いて、著者らは1が分子設計に則り反芳香族性を発現しているかを調査した。関連化合物1, 3–5の平面構造に固定化したアゼピン環におけるNICS(1)zzから反芳香族性を比較した(図2C)。アゼピン3とジベンゾアゼピン4、ジチエノアゼピン5の比較から、アゼピン環の反芳香族性は芳香環の縮環により弱くなる。この反芳香族性の低下は、チエノ縮環体5よりもベンゾ縮環体4で顕著である。これは、チオフェン環の芳香族性がベンゼン環よりも弱く、アゼピン環上の環電流が縮環によって大きく損なわれなかった結果と考えられる。また、電子受容性基をもつ1は、5よりも弱いものの反芳香族性を有している。原因として、1のキノイド型の共鳴構造によるアゼピン環上の環電流の減少が考えられる。さらに、ACID (anisotropy of the induced current density) plotsからも1のアゼピン環の反芳香族性が支持された。これらの理論計算より、1が反芳香族性をもつことが明らかとなった。

最後に、この反芳香族性NIR色素の分子設計における必須要素を精査した。DFT計算から、1および電子受容性基をもつベンゾ縮環体2、電子受容性基もたないチエノ縮環体5の基底状態での最安定構造はそれぞれ、1は平面構造、25は屈曲構造であることがわかった(図2D)。この計算結果から、本分子設計のチオフェンの縮環と電子受容性基の導入はどちらも必要不可欠であると結論づけた。

図2. (A) 1の単結晶X線構造解析、(B) 1と2の吸収/蛍光スペクトル (図は論文より引用、一部改変)、(C) NICS(1)zzに基づくアゼピン環の反芳香族性の評価、(D) DFT計算で得られた基底状態における最安定構造

 

以上の研究により、著者らは反芳香族性に基づく新たなNIR色素の分子設計を実証した。チエノ縮環と電子受容性基の導入による反芳香族性の緩和が、アゼピン環を反芳香族性の必要条件である平面構造へと導いた。この芳香族性に関する二面性を精緻に作り込む分子設計にはJanusの二つの顔も驚きを隠せないだろう。

 参考文献

  1. (a) Li, Q.; Guo, Y.; Liu, Y. Exploration of Near-Infrared Organic Photodetectors. Chem Mater. 2019, 31, 6359–6379. DOI: 10.1021/acs.chemmater.9b00966 (b) Leitão, M. M.; de Melo‐Diogo, D.; Alves, C. G.; Lima‐Sousa, R.; Correia, I. J. Prototypic Heptamethine Cyanine Incorporating Nanomaterials for Cancer Phototheragnostic. Adv. Healthcare Mater. 2020, 9, 1901665. DOI: 10.1002/adhm.201901665
  2. (a) Liu, S.; Li, Y.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Structural and Process Controls of AIEgens for NIR-II Theranostics. Chem. Sci. 2021, 12, 3427–3436. DOI: 10.1039/D0SC02911D (b) Jiao, C.; Wu, J. Fused Polycyclic Aromatic Compounds with Near Infrared Absorption and Emission. Synlett 2012, 2012, 171–184. DOI: 10.1055/s-0031-1289894 (c) Mao, Z.; Rha, H.; Kim, J.; You, X.; Zhang, F.; Tao, W.; Kim, J. S. THQ–Xanthene: An Emerging Strategy to Create Next‐Generation NIR‐I/II Fluorophores. Adv. Sci. 2023, 10, 2301177. DOI: 10.1002/advs.202301177
  3. Michalsky, I.; Gensch, V.; Walla, C.; Hoffmann, M.; Rominger, F.; Oeser, T.; Tegeder, P.; Dreuw, A.; Kivala, M. Fully Bridged Triphenylamines Comprising Five‐ and Seven‐Membered Rings. Chem. Eur. J. 2022, 28, e202200326. DOI: 10.1002/chem.202200326
  4. Chen, Y.; Chang, K.; Meng, F.; Tseng, S.; Chou, P. Broadening the Horizon of the Bell–Evans–Polanyi Principle towards Optically Triggered Structure Planarization. Angew. Chem., Int. Ed. 2021, 60, 7205–7212. DOI: 10.1002/anie.202015274
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. ケムステが化学コミュニケーション賞2012を受賞しました
  2. π-アリルイリジウムに新たな光を
  3. アマゾン・アレクサは化学者になれるか
  4. 天然イミンにインスパイアされたペプチド大環状化反応
  5. 表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッ…
  6. 結晶データの登録・検索サービス(Access Structure…
  7. 可視光応答性光触媒を用いる高反応性アルキンの生成
  8. (+)-ミンフィエンシンの短工程不斉全合成

注目情報

ピックアップ記事

  1. 東北地方太平洋沖地震に募金してみませんか。
  2. 書物から学ぶ有機化学4
  3. Process Mass Intensity, PMI(プロセス質量強度)
  4. ティム・スワガー Timothy M. Swager
  5. 金と炭素がつくりだす新たな動的共有結合性を利用した新たな炭素ナノリングの合成法の確立
  6. エマルジョンラジカル重合によるトポロジカル共重合体の実用的合成
  7. 2009年6月人気化学書籍ランキング
  8. 第170回―「化学のジョブマーケットをブログで綴る」Chemjobber
  9. ケムステ版・ノーベル化学賞候補者リスト【2018年版】
  10. 東レ工場炎上2人重傷 名古屋

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP