[スポンサーリンク]

化学者のつぶやき

目指せPlanar!反芳香族性NIR色素の開発

[スポンサーリンク]

ジチエノアゼピンを主骨格とした反芳香族性のNIR色素が開発された。チエノ縮環と電子受容性基によるアゼピン環の平面化に伴う反芳香族性の獲得が近赤外領域での光学特性発現の鍵である。

NIR色素の分子設計

近赤外線領域(700–2500 nm)に吸収/蛍光特性を示すNIR色素(near-infrared dye)は、光エレクトロニクス分野や生命科学研究での応用に大きな可能性を秘めている色素である[1]。NIR色素は近赤外領域での光学特性を獲得するために様々な分子設計が報告されており、代表例としてドナー–p–アクセプター型、拡張PAH (polycyclic aromatic hydrocarbon)型、ポリメチン型が挙げられる[2]。これらの分子設計の多くは、HOMO–LUMOギャップを狭くするために長いp共役系をもつ。

今回、名古屋大学の村井准教授と山口教授らは新たな分子設計に基づくNIR色素の開発を試みた。具体的には、長いp共役系に代わり、狭いHOMO–LUMOギャップをもつ反芳香族性分子を利用した分子設計である。主骨格として反芳香族性をもちうる8p電子系のアゼピンに着目した(図1B)。しかし、アゼピンは不安定であり、ベンゼン環を縮環させたジベンゾ[b,f]アゼピンとしなければ安定に取り扱うことはできない[3]。だが、ジベンゾ[b,f]アゼピン中のアゼピン環は屈曲しており反芳香族性ではなく非芳香族性をもつ[4]。アゼピン骨格に反芳香族性を付与するため、著者らはベンゾ縮環をチエノ縮環としたジチエノ[b,f]アゼピンの両端に電子受容性基をもつ分子Aを設計した。ジチエノアゼピン誘導体Aは、キノイド型の共鳴の寄与により、理想的なアゼピン環がもちうる反芳香族性には劣るものの、平面構造となることで反芳香族性を獲得しうる。したがってAは、反芳香族性に起因する狭いHOMO–LUMOギャップから近赤外領域での光学特性が期待できる。

図1. (A) NIR色素の分子設計の代表例 (B) ジチエノアゼピンを主骨格としたNIR色素の分子設計

 

Dithienoazepine-Based Near-Infrared Dyes: Janus-Faced Effects of a Thiophene-Fused Structure on Antiaromatic Azepines

Murai, M.; Enoki, T.; Yamaguchi, S.Angew. Chem., Int. Ed. 2023, e202311445.

DOI: 10.1002/anie.202311445

論文著者の紹介

研究者:Shigehiro Yamaguchi (山口茂弘)

研究者の経歴:

1991–1993M.S., Kyoto University, Japan (Prof. Yoshihiko Ito)
1993–1997Research assistant, Institute for Chemical Research, Kyoto University, Japan
Ph.D., Kyoto University, Japan (Prof. Kohei Tamao)
2000–2001     Visiting Scholar, Massachusetts Institute of Technology, USA (Prof. Timothy M. Swager)
2003–2005     Associate professor, Graduate School of Science, Nagoya University, Japan
2005–                 Professor, Graduate School of Science, Nagoya University, Japan
2012–                 Professor, Research Center for Materials Science (RCMS), Nagoya University, Japan
2013–                 Professor, Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Japan
2014–Deputy director, ITbM, Nagoya University, Japan
2017–                 Director, RCMS, Nagoya University, Japan
研究内容:特異な光物性と電子物性をもつ機能性p電子系分子の創出

研究者:Masahito Murai (村井征史)

研究者の経歴:
2005–2007     M.S., Kyoto University, Japan (Prof. Tamejiro Hiyama)
2007–2010     Ph.D., Kyoto University, Japan (Prof. Kouichi Ohe)
2010–2012     JSPS Research Fellowship for Young Scientist PD, Tokyo Institute of
Technology, Japan (Prof. Munetaka Akita)
2011                    Postdoc, University of California, Santa Barbara, USA (Prof. Craig J. Hawker)
2012–2019Assistant professor, Graduate School of Natural Science and Technology, Okayama University,
Japan (Prof. Kazuhiko Takai)
2019–                 Associate professor, Graduate School of Science School of Science, Nagoya University, Japan
(Prof. Shigehiro Yamaguchi)

研究内容:配列制御されたイオン対による共役ソフトマテリアルの開発、5–7族金属触媒の反応開発

論文の概要

まず、著者らは前述の分子設計に基づくアゼピン色素の合成とその光学特性の解析に着手した。彼らは電子受容性基(EA: (Z)-CH=C(CN)(4-CNC6H4))をもつジチエノアゼピン誘導体1を合成した(図2A)。X線構造解析より、アゼピン環の内角の和(898°)が正七角形の内角の和(900°)に近いため、1は平面に近い構造であることが明らかとなった。また、ジチエノアゼピン骨格において結合長交替が見られないことから、キノイド型の共鳴構造の寄与が示唆された。1の光学測定から(極大吸収波長: 709 nm、極大蛍光波長: 746 nm)、1は仮説通り近赤外線領域に光学特性をもつNIR色素であることが確かめられた(図2B)。また、ベンゾ縮環体2はチエノ縮環体1よりも極大吸収波長と極大蛍光波長の差が大きく、これはそれぞれの基底状態での分子構造に由来する(詳しくは論文を参照)。

続いて、著者らは1が分子設計に則り反芳香族性を発現しているかを調査した。関連化合物1, 3–5の平面構造に固定化したアゼピン環におけるNICS(1)zzから反芳香族性を比較した(図2C)。アゼピン3とジベンゾアゼピン4、ジチエノアゼピン5の比較から、アゼピン環の反芳香族性は芳香環の縮環により弱くなる。この反芳香族性の低下は、チエノ縮環体5よりもベンゾ縮環体4で顕著である。これは、チオフェン環の芳香族性がベンゼン環よりも弱く、アゼピン環上の環電流が縮環によって大きく損なわれなかった結果と考えられる。また、電子受容性基をもつ1は、5よりも弱いものの反芳香族性を有している。原因として、1のキノイド型の共鳴構造によるアゼピン環上の環電流の減少が考えられる。さらに、ACID (anisotropy of the induced current density) plotsからも1のアゼピン環の反芳香族性が支持された。これらの理論計算より、1が反芳香族性をもつことが明らかとなった。

最後に、この反芳香族性NIR色素の分子設計における必須要素を精査した。DFT計算から、1および電子受容性基をもつベンゾ縮環体2、電子受容性基もたないチエノ縮環体5の基底状態での最安定構造はそれぞれ、1は平面構造、25は屈曲構造であることがわかった(図2D)。この計算結果から、本分子設計のチオフェンの縮環と電子受容性基の導入はどちらも必要不可欠であると結論づけた。

図2. (A) 1の単結晶X線構造解析、(B) 1と2の吸収/蛍光スペクトル (図は論文より引用、一部改変)、(C) NICS(1)zzに基づくアゼピン環の反芳香族性の評価、(D) DFT計算で得られた基底状態における最安定構造

 

以上の研究により、著者らは反芳香族性に基づく新たなNIR色素の分子設計を実証した。チエノ縮環と電子受容性基の導入による反芳香族性の緩和が、アゼピン環を反芳香族性の必要条件である平面構造へと導いた。この芳香族性に関する二面性を精緻に作り込む分子設計にはJanusの二つの顔も驚きを隠せないだろう。

 参考文献

  1. (a) Li, Q.; Guo, Y.; Liu, Y. Exploration of Near-Infrared Organic Photodetectors. Chem Mater. 2019, 31, 6359–6379. DOI: 10.1021/acs.chemmater.9b00966 (b) Leitão, M. M.; de Melo‐Diogo, D.; Alves, C. G.; Lima‐Sousa, R.; Correia, I. J. Prototypic Heptamethine Cyanine Incorporating Nanomaterials for Cancer Phototheragnostic. Adv. Healthcare Mater. 2020, 9, 1901665. DOI: 10.1002/adhm.201901665
  2. (a) Liu, S.; Li, Y.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Structural and Process Controls of AIEgens for NIR-II Theranostics. Chem. Sci. 2021, 12, 3427–3436. DOI: 10.1039/D0SC02911D (b) Jiao, C.; Wu, J. Fused Polycyclic Aromatic Compounds with Near Infrared Absorption and Emission. Synlett 2012, 2012, 171–184. DOI: 10.1055/s-0031-1289894 (c) Mao, Z.; Rha, H.; Kim, J.; You, X.; Zhang, F.; Tao, W.; Kim, J. S. THQ–Xanthene: An Emerging Strategy to Create Next‐Generation NIR‐I/II Fluorophores. Adv. Sci. 2023, 10, 2301177. DOI: 10.1002/advs.202301177
  3. Michalsky, I.; Gensch, V.; Walla, C.; Hoffmann, M.; Rominger, F.; Oeser, T.; Tegeder, P.; Dreuw, A.; Kivala, M. Fully Bridged Triphenylamines Comprising Five‐ and Seven‐Membered Rings. Chem. Eur. J. 2022, 28, e202200326. DOI: 10.1002/chem.202200326
  4. Chen, Y.; Chang, K.; Meng, F.; Tseng, S.; Chou, P. Broadening the Horizon of the Bell–Evans–Polanyi Principle towards Optically Triggered Structure Planarization. Angew. Chem., Int. Ed. 2021, 60, 7205–7212. DOI: 10.1002/anie.202015274

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 超原子価ヨウ素を触媒としたジフルオロ化反応
  2. 第五回ケムステVシンポジウム「最先端ケムバイオ」開催報告
  3. 3Dプリント模型を買ってコロナウイルス研究を応援しよう!
  4. Elsevierのニッチな化学論文誌たち
  5. アメリカで Ph.D. を取る –奨学金を申請するの巻–
  6. 無限の可能性を合成コンセプトで絞り込むーリアノドールの全合成ー
  7. 化学者のためのエレクトロニクス講座~電解で起こる現象編~
  8. 超高圧合成、添加剤が選択的物質合成の決め手に -電池材料等への応…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 東大薬小林教授がアメリカ化学会賞を受賞
  2. 大学の学科がクラウドファンディング!?『化学の力を伝えたい』
  3. 研究助成金を獲得する秘訣
  4. アメリカで Ph.D. を取る -Visiting Weekend 参加報告 (後編)-
  5. アレックス・ラドセヴィッチ Alexander Radosevich 
  6. ドウド・ベックウィズ環拡大反応 Dowd-Beckwith Ring Expansion
  7. 液中でも観察OK 原子間力顕微鏡: 京大グループ開発
  8. ホウ素と窒素固定のおはなし
  9. 有機溶媒系・濃厚分散系のための微粒子分散・凝集評価【終了】
  10. 高活性、高耐久性を兼ね備えた世界初の固体鉄触媒の開発

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2024年1月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

5/15(水)Zoom開催 【旭化成 人事担当者が語る!】2026年卒 化学系学生向け就活スタート講座

化学系の就職活動を支援する『化学系学生のための就活』からのご案内です。化学業界・研究職でのキャリ…

フローマイクロリアクターを活用した多置換アルケンの効率的な合成

第610回のスポットライトリサーチは、京都大学大学院理学研究科(依光研究室)に在籍されていた江 迤源…

マリンス有機化学(上)-学び手の視点から-

概要親しみやすい会話形式を用いた現代的な教育スタイルで有機化学の重要概念を学べる標準教科書.…

【大正製薬】キャリア採用情報(正社員)

<求める人物像>・自ら考えて行動できる・高い専門性を身につけている・…

国内初のナノボディ®製剤オゾラリズマブ

ナノゾラ®皮下注30mgシリンジ(一般名:オゾラリズマブ(遺伝子組換え))は、A…

大正製薬ってどんな会社?

大正製薬は病気の予防から治療まで、皆さまの健康に寄り添う事業を展開しています。こ…

一致団結ケトンでアレン合成!1,3-エンインのヒドロアルキル化

ケトンと1,3-エンインのヒドロアルキル化反応が開発された。独自の配位子とパラジウム/ホウ素/アミン…

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP