[スポンサーリンク]

一般的な話題

ワンチップ顕微鏡AminoMEを買ってみました

[スポンサーリンク]

2014年、ノーベル化学賞が超解像度顕微鏡で授与されたためイメージング技術に注目が集まりました。その後もさまざまな顕微鏡が開発され、進歩し続けています。
昨年、ベンチャー企業のIDDKがクラウドファンディングでワンチップ顕微鏡AminoMEの出資を募っていたため、(私物として)買ってみました。ちょっと使ったまましばらく放置していましたが、せっかくお金を出したのでここでレビューを書いてみたいと思います。

ワンチップ顕微鏡とは?その仕組みと従来光学顕微鏡との違い

IDDKのホームページによると、ワンチップ顕微鏡は光学センサー上に観察対象をのせて直接画像として読み取る技術のようです。通常の顕微鏡ではサンプルをレンズ越しに読み取るのに対し、AminoMEでは4.7 mm×3.2 mmのセンサーを用いて分解能1.2 μmで読み込むことができます。公式ソフトで保存できる画像が最大4208×3120 pxなので、スペック的にオンセミ AR1335か似たようなエリアイメージセンサーを使っているものと思われます。
この方式のメリットとしては光学系が単純なためシンプルで小さな構成にできることやピント合わせが不要なことです。実際、AminoMEはUSBメモリーよりちょっと大きいサイズの装置です。デメリットとしては可視光波長による理論限界により画素ピッチを0.7 μmより小さくできないことでしょう。実際、現行スマホ用カメラセンサーも最小そのぐらいまでのようです。このスペックは光学顕微鏡の分解能よりわずかに悪いとはいえ、実用上ではだいたい似たようなものだと思われます。

実際に使ってみました

AminoMEを実際に使ってみました。観察対象は理科の実験授業などでもおなじみの口腔上皮細胞です。綿棒で頬の裏側をこすり、センサー上に載せて観察してみました。照明はiPhoneのライトを上からあてるだけです。

専用ソフトGUAISで観察中のスクリーンショット

AminoMEを使った観察にはWindows版のみの専用ソフトが必要で、他のOSでは動きません。Windows上ではUSBカメラとして認識されるようですが、OS標準のカメラアプリやOpenCVで動かすことはできませんでした。画像保存形式はRAWのみのため、ImageJIrfanViewなどの対応ソフトでTIFFやJPEGなど汎用形式に変換する必要があります。あんまり使い勝手いいとは言えません。

等倍表示

観察中は左下に範囲が表示され、等倍、1/2倍など画素に応じた倍率を設定できます。家で撮影したため染色は行なっていませんが、等倍表示では核まできちんと確認できました。かなり鮮明です。普通の明視野光学顕微鏡でこの手の非染色サンプルのピント合わせは難しいイメージがあるので、一発で観察できるのはけっこうなメリットだと思われます。

ラズパイカメラで同じようなことはできないか?

約10年前、ニコンからD600というカメラが発売されました。シャッターを切れば切るほどセンサー上についたゴミが写ることで有名になったものの、なぜかリコールされずに個別交換対応となった曰くつき製品です。私も買ってしまったため、せっかく撮った旅行先風景写真の青空が、特にレンズを絞った際にはゴミだらけになっていた思い出があります。エリアセンサー上に観察物を直接のせるAminoMEは、似たような基本原理で透過像を得ているのだと思われます。光子と電子の違いはありますが、透過型電子顕微鏡(TEM)でいう電子直接検出と同じ仕組みでしょう。むき出しのエリアイメージセンサーさえあれば同様の観察ができると思い、実際にやってみました。

Pi Camera V2 + カバーガラス

Raspberry Pi Camera V2Raspberry Pi(ラズパイ)専用のカメラで、使われているソニーセンサーIMX219はAminoMEの公称スペックによく似ています。Pi Cameraはラズパイ上でプログラム撮影するのに便利で、AminoME同様の目的で使えるならば自由度が増すことが予想されます。このモジュールは3500円程度なので研究費で気軽に買えるお値段です(記事のものは私物ですが)。Pi Cameraにはもともと簡易なレンズが接着されていますが、爪を入れて剥がすとセンサーをむき出しにできます。センサーにAmazonでも手に入るカバーガラスをのせたあと、その上に綿棒をすりつけて観察してみました。(センサーとカバーガラスの間にはギャップができたため、イメージセンサーにも使えるカメラレンズクリーナー液を間に垂らしました。)

Pi Cameraで取得した画像(全画素)

撮影した画像がこちら。照明条件は同じくiPhoneのライトです。レンズを剥離する際にIRカットフィルタも外されるため、カラー画像では余計な赤外光を拾って赤みがかります。拡大しない限り細胞の形はそれっぽく見えています。

モノクロ等倍

しかし等倍表示したところ像がボケていました。これは前述のようにセンサー・観察対象間の距離があるからだと思われます。ここまできたらとカバーガラスを取り去り綿棒に水を含ませてセンサー上に直接落として観察したところ、かなり鮮明に細胞を見ることができました。しかしセンサー周辺部へと徐々に水滴が広がってワイヤー配線に触れたせいで、ショートが起こりカメラモジュールが壊れたために画像未取得のまま打ち切りました。

感覚的に、Pi Cameraのセンサー周辺のワイヤーをエポキシ樹脂(接着材)などで固めて絶縁をきちんとすればAminoME同等のものを安くDIYできる気がしますが、カメラモジュールを買い直してまで家でやるのは面倒なのでやめました。仕事の実験環境では細胞をまったく扱わないのですが、例えばマイクロ流体デバイスなど研究する機会があれば再度挑戦するかもしれません。

ところでラズパイ+Pi Cameraはプログラムを書き込んだmicroSDを挿すだけで簡易USBカメラとして用いることができます。こちらはWindowsでもMacでもLinuxでも動きます。

現状のプログラムでは全画素の表示に対応しておらずHDなどに縮小されてしまいますが、数μm程度の解像度でよければAminoMEより使いやすいUSBデバイスを自作できるかもしれません。半導体不足の影響で在庫切れが続いているものの、ラズパイUSBカメラは全部で5千円程度から組めます。特別なプログラミング知識はまったく必要としないので興味をもったら試してみてください。

今後のAminoMEに期待すること

AminoMEは現在55,000円で公式販売されているようです。センサー部分に対しどの程度の独自カスタマイズが加えられているのかわかりませんが、個人的にはハードウェアをアップデートしていくよりも先にソフトウェアの使い勝手をよくするか、API公開でプログラムに組み込みやすくして欲しいと感じました。画像処理でさまざまなデータが簡単に得られるようになってきている現在、自由にプログラム制御できる装置は重要です。私は仕事ではサブμm以下を観察することがほとんどのためAminoMEは趣味?でしか使えません。だからこそいろいろ遊びやすくなることを期待しています。

 

GEN

投稿者の記事一覧

大学JK->国研研究者。材料作ったり卓上CNCミリングマシンで器具作ったり装置カスタマイズしたり共働ロボットで遊んだりしています。ピース写真付インタビューが化学の高校教科書に掲載されました。

関連記事

  1. 昇華の反対は?
  2. 「極ワイドギャップ半導体酸化ガリウムの高品質結晶成長」– カリフ…
  3. 除虫菊に含まれる生理活性成分の生合成酵素を単離
  4. 広範な反応性代謝物を検出する蛍光トラッピング剤 〜毒性の黒幕を捕…
  5. 化学物質でiPS細胞を作る
  6. 糖鎖を化学的に挿入して糖タンパク質を自在に精密合成
  7. 米国へ講演旅行へ行ってきました:Part III
  8. タミフルの新規合成法・その2

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ケムステ版・ノーベル化学賞候補者リスト【2022年版】
  2. 第162回―「天然物の合成から作用機序の解明まで」Karl Gademann教授
  3. オンライン座談会『ケムステスタッフで語ろうぜ』開幕!
  4. コーヒーブレイク
  5. 重水は甘い!?
  6. 橘 熊野 Yuya Tachibana
  7. ESI-MSの開発者、John B. Fenn氏 逝去
  8. 有機化学者のラブコメ&ミステリー!?:「ラブ・ケミストリー」
  9. 【8月開催】マイクロ波化学のQ&A付きセミナー
  10. 化学者の卵に就職活動到来

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年3月
 123456
78910111213
14151617181920
21222324252627
28293031  

注目情報

注目情報

最新記事

小山 靖人 Yasuhito Koyama

小山 靖人(こやま やすひと)は、日本の有機化学者。富山県立大学工学部医薬品工学…

ポンコツ博士の海外奮闘録XIV ~博士,釣りをする~

シリーズ累計20話!!タイトルの○数字がなくなりました。節々の回は出来る限り実験ネタや個人的なグッと…

定型抗精神病薬 「ピモジド」の化学修飾により新規難治性疼痛治療薬として極めて有望な化合物の創製に成功

第445回のスポットライトリサーチは、近畿大学大学院 薬学研究科 薬学専攻 病態薬理学研究室の笠波 …

【好評につきリピート開催】マイクロ波プロセスのスケールアップ〜動画で実証設備を紹介!〜 ケミカルリサイクル、乾燥炉、ペプチド固相合成、エステル交換、凍結乾燥など

<内容>マイクロ波プロセスのスケールアップがどのように実現されるか、実証設備の動画も交えてご紹介…

三井化学、DXによる企業変革の成果を動画で公開

三井化学株式会社は、常務執行役員 CDO 三瓶 雅夫による、三井化学グループ全社でのDX推進の取り組…

消光団分子の「ねじれ」の制御による新たな蛍光プローブの分子設計法の確立

第444回のスポットライトリサーチは、東京大学薬学部/大学院薬学系研究科 薬品代謝化学教室に在籍され…

マテリアルズ・インフォマティクスの手法:条件最適化に用いられるベイズ最適化の基礎

開催日:2022/11/30  申込みはこちら■開催概要近年、少子高齢化、働き手の不足の…

製薬系企業研究者との懇談会

日本薬学会医薬化学部会にある創薬ニューフロンティア(NF)検討会は,「学生のモチベーションやキャリア…

電子1個の精度で触媒ナノ粒子の電荷量を計測

第443回のスポットライトリサーチは、九州大学大学院工学研究院エネルギー量子工学部門 超顕微解析研究…

ハットする間にエピメリ化!Pleurotinの形式合成

天然物Pleurotinの形式合成が報告された。可視光による光エノール化/Diels–Alder反応…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP