[スポンサーリンク]

化学者のつぶやき

無保護環状アミンをワンポットで多重官能基化する

[スポンサーリンク]

脂環式アミン類の直截的C–H官能基化反応が開発された。保護基や遷移金属触媒を必要としない本手法は、環状アミン類に対して一挙に三つの官能基の導入が可能である。

脂環式アミン類の直截的C–H官能基化反応

含窒素ヘテロ環化合物は生物活性分子に頻出する重要な化合物群である。豊富な化学原料である脂環式アミン類を直截的に官能基化し、簡便に置換ヘテロ環化合物へ導く手法は、医農薬品開発において待望される。このような背景から、脂環式アミン類の直截的C–H官能基化反応は数多く報告があるが、その多くはアミンの保護が必要であり、無保護の二級アミンに対して同時に二つ以上の官能基を導入した例はない。

無保護環状アミン類の直截的官能基化の古典的な例として、リチオ化されたピロリジンのβ位C–H官能基化反応が古くから知られる。本反応ではリチウムアミドからケトンへのヒドリド移動により環状イミンが生成する(図1A)[1,2]。イミンは即座に脱プロトン化され、1-アザアリルアニオンのケトンへの付加により三級アルコールを与える。以前、Florida大学のSeidelらは、この知見をもとに環状イミンを経由した無保護脂環式アミンのa位直截的官能基化を報告した(図1B)[3,4]。反応条件を精査することで1-アザアリルアニオンの生成を抑制し、種々の官能基の導入に成功した。

今回Seidelらは環状イミンから発生させた1-アザアリルアニオンをアルキル化することで、無保護アミンのβ位官能基化を達成した。生じたイミンを還元することで一置換アミンへ、a位の官能基化によって二置換アミンへ変換できる。さらに、二官能基化されたリチウムアミドのさらなる官能基化により、最大で三つの官能基をワンポットで無保護アミンに導入することが可能である(図1C)。

図1. (A) 無保護環状アミン類の古典的な直截官能基化、(B) 環状イミンを用いたa位の官能基化、(C) 今回の反応

 

“Rapid Functionalization of Multiple C–H Bonds in Unprotected Alicyclic Amines”

Chen, A.; Paul, A.; Abboud, K. A.; Seidel, D.

Nat. Chem. 2020, 12, 545–550. DOI: 10.1038/s41557-020-0438-z

論文著者の紹介


研究者:Daniel Seidel
研究者の経歴:
–1998 BSc, Friedrich-Schiller Universität, Germany (Prof. E. G. Jäger)
1998–2002 Ph.D., University of Texas, USA (Prof. J. L. Sessler)
2002–2005 Postdoc, Harvard University, USA (Prof. D. A. Evans)
2005–2011 Assistant Professor, Rutgers University, USA
2011–2014 Associate Professor, Rutgers University, USA
2014–2017 Professor, Rutgers University, USA
2017– Professor, University of Florida, USA

研究内容:アミンのC–H官能基化反応の開発、新規不斉触媒の開発

論文の概要

本反応は次の機構で進行する(図2A)。まず、1のリチオ化で生じたIから、ケトンへヒドリドが移動し環状イミンIIを与える。LDAで処理することで発生した1-アザアリルアニオンIIIは、アルキルハライドとの求核置換反応によりβ位置換体IVを与える。イミンIVを還元して生じた脂環式アミン2は、単離を容易にするためカーバマート3へと変換される。一方、IVに有機リチウム試薬を作用させた後、プロトン化すると二置換体4が、ケトンを作用させると環状イミンVIが得られる。VIは有機リチウム試薬による攻撃を受けa, b, a’-三置換体5を与える。

本反応における求電子剤はベンジル、アリル、アルキルハライドが使用可能で、アリール基上にメチル基(3a)やシアノ基(3b)をもつベンジルハライドも利用できた(図2B)。また、ブロモ基をもつベンジルハライド(3c)を用いた場合にもブロモ基を損なうことなく反応が進行した。さらに、アルキル基上にエーテル(3d,3e)やエステル(3f)、ハロゲン(3g)が存在しても所望の生成物が得られた。加えて、ピペラジン(3h)や中員環のアミン(3i)を用いても中程度から良好な収率で生成物を与えた。a位およびa’位への求核付加反応では、アルキルリチウムやアリールリチウム(4a–4e,5a5c)が利用でき、ジアステレオ選択的に反応が進行した(図2C,2D)。

図2. (A) 反応機構、(B) b-官能基化の基質適用範囲、(C) a, b-官能基化の基質適用範囲、(D) a, b, a’-官能基化の基質適用範囲

 

以上、環状アミン類の一工程での多重官能基化反応が開発された。本手法はアミンの保護が必要なく、立体選択的に反応が進行する。特殊な試薬や触媒を使用しない、新奇ヘテロ環化合物迅速合成法として利用されることが期待される。

参考文献

  1. Wittig, G.; Heese, A. Hydrid-Übertragung von Lithium-Pyrrolidid auf Azomethine. Liebigs Ann. Chem. 1971, 746, 174–184. DOI : 1002/jlac.19717460118
  2. Wittig, G.; Heese, A. Zur Reaktionsweise N‐Metallierter Acyclischer und Cyclischer Sekundärer Amine. Liebigs Ann. Chem. 1971, 746, 149–173. DOI : 1002/jlac.19717460117
  3. Chen, W.; Ma, L. Paul, A.; Seidel, D. Direct α-C–H Bond Functionalization of Unprotected Cyclic Amines. Nat. Chem. 2018, 10, 165–169. DOI : 10.1038/nchem.2871
  4. Paul, A.; Seidel, D. α‐Functionalization of Cyclic Secondary Amines: Lewis Acid Promoted Addition of Organometallics to Transient Imines. J. Am. Chem. Soc. 2019, 141, 8778–8782. DOI : 10.1021/jacs.9b04325
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. いつも研究室で何をしているの?【一問一答】
  2. 含フッ素カルボアニオン構造の導入による有機色素の溶解性・分配特性…
  3. 【書籍】化学探偵Mr. キュリー
  4. N-オキシドの性質と創薬における活用
  5. 10種類のスパチュラを試してみた
  6. 速報! ノーベル物理学賞2014日本人トリプル受賞!!
  7. 市販の化合物からナノグラフェンライブラリを構築 〜新反応によりナ…
  8. 化学実験系YouTuber

注目情報

ピックアップ記事

  1. 製薬特許売買市場、ネットに創設へ…大商とUFJ信託
  2. ノバルティス、後発薬品世界最大手に・米独社を買収
  3. プロトン共役電子移動を用いた半導体キャリア密度の精密制御
  4. ケネディ酸化的環化反応 Kennedy Oxydative Cyclization
  5. アステラス製薬、抗うつ剤の社会不安障害での効能・効果取得
  6. 第5回ICReDD国際シンポジウム開催のお知らせ
  7. 信越化学、塩化ビニル樹脂を値上げ
  8. ケミカルメーカーのライフサエンス事業戦略について調査結果を発表
  9. ジブロモイソシアヌル酸:Dibromoisocyanuric Acid
  10. 酸化亜鉛を用い青色ダイオード 東北大開発 コスト減期待

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP