[スポンサーリンク]

化学者のつぶやき

無保護環状アミンをワンポットで多重官能基化する

[スポンサーリンク]

脂環式アミン類の直截的C–H官能基化反応が開発された。保護基や遷移金属触媒を必要としない本手法は、環状アミン類に対して一挙に三つの官能基の導入が可能である。

脂環式アミン類の直截的C–H官能基化反応

含窒素ヘテロ環化合物は生物活性分子に頻出する重要な化合物群である。豊富な化学原料である脂環式アミン類を直截的に官能基化し、簡便に置換ヘテロ環化合物へ導く手法は、医農薬品開発において待望される。このような背景から、脂環式アミン類の直截的C–H官能基化反応は数多く報告があるが、その多くはアミンの保護が必要であり、無保護の二級アミンに対して同時に二つ以上の官能基を導入した例はない。

無保護環状アミン類の直截的官能基化の古典的な例として、リチオ化されたピロリジンのβ位C–H官能基化反応が古くから知られる。本反応ではリチウムアミドからケトンへのヒドリド移動により環状イミンが生成する(図1A)[1,2]。イミンは即座に脱プロトン化され、1-アザアリルアニオンのケトンへの付加により三級アルコールを与える。以前、Florida大学のSeidelらは、この知見をもとに環状イミンを経由した無保護脂環式アミンのa位直截的官能基化を報告した(図1B)[3,4]。反応条件を精査することで1-アザアリルアニオンの生成を抑制し、種々の官能基の導入に成功した。

今回Seidelらは環状イミンから発生させた1-アザアリルアニオンをアルキル化することで、無保護アミンのβ位官能基化を達成した。生じたイミンを還元することで一置換アミンへ、a位の官能基化によって二置換アミンへ変換できる。さらに、二官能基化されたリチウムアミドのさらなる官能基化により、最大で三つの官能基をワンポットで無保護アミンに導入することが可能である(図1C)。

図1. (A) 無保護環状アミン類の古典的な直截官能基化、(B) 環状イミンを用いたa位の官能基化、(C) 今回の反応

 

“Rapid Functionalization of Multiple C–H Bonds in Unprotected Alicyclic Amines”

Chen, A.; Paul, A.; Abboud, K. A.; Seidel, D.

Nat. Chem. 2020, 12, 545–550. DOI: 10.1038/s41557-020-0438-z

論文著者の紹介


研究者:Daniel Seidel
研究者の経歴:
–1998 BSc, Friedrich-Schiller Universität, Germany (Prof. E. G. Jäger)
1998–2002 Ph.D., University of Texas, USA (Prof. J. L. Sessler)
2002–2005 Postdoc, Harvard University, USA (Prof. D. A. Evans)
2005–2011 Assistant Professor, Rutgers University, USA
2011–2014 Associate Professor, Rutgers University, USA
2014–2017 Professor, Rutgers University, USA
2017– Professor, University of Florida, USA

研究内容:アミンのC–H官能基化反応の開発、新規不斉触媒の開発

論文の概要

本反応は次の機構で進行する(図2A)。まず、1のリチオ化で生じたIから、ケトンへヒドリドが移動し環状イミンIIを与える。LDAで処理することで発生した1-アザアリルアニオンIIIは、アルキルハライドとの求核置換反応によりβ位置換体IVを与える。イミンIVを還元して生じた脂環式アミン2は、単離を容易にするためカーバマート3へと変換される。一方、IVに有機リチウム試薬を作用させた後、プロトン化すると二置換体4が、ケトンを作用させると環状イミンVIが得られる。VIは有機リチウム試薬による攻撃を受けa, b, a’-三置換体5を与える。

本反応における求電子剤はベンジル、アリル、アルキルハライドが使用可能で、アリール基上にメチル基(3a)やシアノ基(3b)をもつベンジルハライドも利用できた(図2B)。また、ブロモ基をもつベンジルハライド(3c)を用いた場合にもブロモ基を損なうことなく反応が進行した。さらに、アルキル基上にエーテル(3d,3e)やエステル(3f)、ハロゲン(3g)が存在しても所望の生成物が得られた。加えて、ピペラジン(3h)や中員環のアミン(3i)を用いても中程度から良好な収率で生成物を与えた。a位およびa’位への求核付加反応では、アルキルリチウムやアリールリチウム(4a–4e,5a5c)が利用でき、ジアステレオ選択的に反応が進行した(図2C,2D)。

図2. (A) 反応機構、(B) b-官能基化の基質適用範囲、(C) a, b-官能基化の基質適用範囲、(D) a, b, a’-官能基化の基質適用範囲

 

以上、環状アミン類の一工程での多重官能基化反応が開発された。本手法はアミンの保護が必要なく、立体選択的に反応が進行する。特殊な試薬や触媒を使用しない、新奇ヘテロ環化合物迅速合成法として利用されることが期待される。

参考文献

  1. Wittig, G.; Heese, A. Hydrid-Übertragung von Lithium-Pyrrolidid auf Azomethine. Liebigs Ann. Chem. 1971, 746, 174–184. DOI : 1002/jlac.19717460118
  2. Wittig, G.; Heese, A. Zur Reaktionsweise N‐Metallierter Acyclischer und Cyclischer Sekundärer Amine. Liebigs Ann. Chem. 1971, 746, 149–173. DOI : 1002/jlac.19717460117
  3. Chen, W.; Ma, L. Paul, A.; Seidel, D. Direct α-C–H Bond Functionalization of Unprotected Cyclic Amines. Nat. Chem. 2018, 10, 165–169. DOI : 10.1038/nchem.2871
  4. Paul, A.; Seidel, D. α‐Functionalization of Cyclic Secondary Amines: Lewis Acid Promoted Addition of Organometallics to Transient Imines. J. Am. Chem. Soc. 2019, 141, 8778–8782. DOI : 10.1021/jacs.9b04325

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 【Q&Aシリーズ❶ 技術者・事業担当者向け】 マイクロ…
  2. 27万種類のビルディングブロックが購入できる!?
  3. ナノグラムの油状試料もなんのその!結晶に封じて分子構造を一発解析…
  4. 生体医用イメージングを志向した第二近赤外光(NIR-II)色素:…
  5. メソリティック開裂を経由するカルボカチオンの触媒的生成法
  6. 酸窒化物合成の最前線:低温合成法の開発
  7. 重医薬品(重水素化医薬品、heavy drug)
  8. ケムステイブニングミキサー2015を終えて

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. トリフルオロメタンスルホン酸2-(トリメチルシリル)フェニル : 2-(Trimethylsilyl)phenyl Trifluoromethanesulfonate
  2. アノードカップリングにより完遂したテバインの不斉全合成
  3. 健康食品から未承認医薬成分
  4. 水素化ホウ素亜鉛 Zinc Bodohydride
  5. 第18回次世代を担う有機化学シンポジウム
  6. 海外で開発された強靭なソフトマテリアル
  7. 集積型金属錯体
  8. Density Functional Theory in Quantum Chemistry
  9. ギ酸 (formic acid)
  10. 【速報】2016年ノーベル化学賞は「分子マシンの設計と合成」に!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年6月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

最新記事

ベテラン研究者 vs マテリアルズ・インフォマティクス!?~ 研究者としてMIとの正しい向き合い方

開催日 2024/04/24 : 申込みはこちら■開催概要近年、少子高齢化、働き手の不足…

第11回 慶應有機化学若手シンポジウム

シンポジウム概要主催:慶應有機化学若手シンポジウム実行委員会共催:慶應義塾大…

薬学部ってどんなところ?

自己紹介Chemstationの新入りスタッフのねこたまと申します。現在は学部の4年生(薬学部)…

光と水で還元的環化反応をリノベーション

第609回のスポットライトリサーチは、北海道大学 大学院薬学研究院(精密合成化学研究室)の中村顕斗 …

ブーゲ-ランベルト-ベールの法則(Bouguer-Lambert-Beer’s law)

概要分子が溶けた溶液に光を通したとき,そこから出てくる光の強さは,入る前の強さと比べて小さくなる…

活性酸素種はどれでしょう? 〜三重項酸素と一重項酸素、そのほか〜

第109回薬剤師国家試験 (2024年実施) にて、以下のような問題が出題されま…

産総研がすごい!〜修士卒研究職の新育成制度を開始〜

2023年より全研究領域で修士卒研究職の採用を開始した産業技術総合研究所(以下 産総研)ですが、20…

有機合成化学協会誌2024年4月号:ミロガバリン・クロロププケアナニン・メロテルペノイド・サリチル酸誘導体・光励起ホウ素アート錯体

有機合成化学協会が発行する有機合成化学協会誌、2024年4月号がオンライン公開されています。…

日本薬学会第144年会 (横浜) に参加してきました

3月28日から31日にかけて開催された,日本薬学会第144年会 (横浜) に参加してきました.筆者自…

キシリトールのはなし

Tshozoです。 35年くらい前、ある食品メーカが「虫歯になりにくい糖分」を使ったお菓子を…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP