[スポンサーリンク]

一般的な話題

マイクロ波プロセスの工業化 〜環境/化学・ヘルスケア・電材領域での展開と効果〜(1)

[スポンサーリンク]

冒頭

マイクロ波化学は、1986年のTetrahedron Lettersに掲載された有機合成反応に端を発してから現在に至るまで、有機合成、ナノ粒子合成、重合、乾燥、焼成、フィルム加熱など様々な用途に適用されてきた。

実験室においては長らく新規プロセスとして研究され、数多く効果が確認・報告されている。しかしながら、化学プロセスとして工業化された例は無かった。

当社は、マイクロ波の反応系デザインおよび反応器デザインをプラットフォーム技術として、世界初のマイクロ波工場 (3,000 t/y以上、エステル合成/エステル交換、消防法対応込)を作って以降、様々なターゲットの事業化を推進してきた。

本シリーズでは、マイクロ波のアプリケーションに焦点を絞り、その原理や効果、経済的なメリット、新たなプロダクトの創出、スケールアップ事例について紹介する。

アプリケーション一覧表

下図は、マイクロ波応用例の一部である。中央にマイクロ波がエネルギー源として使用された単位操作(灰色)、周縁部にマイクロ波プロセスによって製造する物質を分野別に色分けして(青:ヘルスケア、赤:電材、緑:環境)表している。

マイクロ波の特長はその汎用性にあり、エネルギー源として、化学合成だけでなく、乾燥や分解、接着、焼成などさまざまな用途に応用が可能である。

 

マイクロ波との相性が良い系・悪い系

時間短縮・収率向上・無溶媒化・品質向上などさまざまなメリットが確認されているマイクロ波だが、ありとあらゆる系で優位性を発現できるわけではない。

下表に、マイクロ波との相性が良い例を示す。いずれにおいても、マイクロ波の選択加熱・直接加熱が前提となる。逆に、マイクロ波と相性の悪い代表例として挙げられるのが、低温反応である。マイクロ波は、特定の化学物質への選択的エネルギー伝達により微視的に非平衡的な局所加熱点を作る。これによって、反応促進等の効果を得るが、低温反応においては非平衡加熱を実現しにくい。

 

以降は、いくつかの具体的事例におけるマイクロ波の効果や優位性の原理について説明する。

プラスチックリサイクル(解重合、熱分解)

ESG経営、サーキュラーエコノミーの重要性が急速に増す昨今、ケミカルリサイクルはキーテクノロジーとして位置付けられている。しかし、高温な伝熱面との接触に依存した従来の外部加熱方式では、設備大型化、低効率、不純物生成などの課題が考えられる。

マイクロ波によるプラスチックケミカルリサイクルにおいては、反応場への波による直接的なエネルギー伝達が可能であるため、従来加熱のように高温な伝熱面(ジャケット加熱面)を必要としない。そのため、設備の小型化や設計温度の低減も可能である。さらに、化石燃料を必要とせず電気がエネルギー源となるため、コンビナートや既存工場の無い地域でのプラント立ち上げも可能である。

以下の例は、ポリエチレン (PE)の熱分解である。PEはマイクロ波を吸収しにくいため、反応系へ添加したマイクロ波吸収性のフィラーを選択的に加熱し、フィラーからの伝熱によりPEの分解を行う。外部伝熱面に依存する従来方式に比べると、伝熱面積が格段に大きく、また温度制御性やリアクター内部の温度分布も制御できるため、反応効率向上や選択率向上を期待できるものである。また、設備の小型化も同様に期待できる。

エステル合成(脱水反応)

マイクロ波化学反応は、脱水反応と非常に相性が良い。反応副生物である水を選択的に加熱し、系外へ除去することで、反応を促進することができるためである。また、反応速度向上に寄与するコンポーネント(Ex. 水や触媒)を選択的に加熱すればよいので、必ずしも系全体を加熱する必要がなく、低温化できるケースも見られる。

以下は、ブチルエステルの製造における、従来加熱(Ex. スチーム加熱)とマイクロ波加熱の経済性比較である。反応時間の短縮によって連続化を可能にし、低温化や収率向上も達成した。従来法に比べて、設備コストは1/3、消費エネルギーは1/4まで低減した。下の写真は当社保有のマイクロ波リアクターである。マイクロ波反応器は、連続式もしくはバッチ式、いずれも選択することができる。(写真は連続式)

また、脱水を伴う反応であれば、エステル合成に限らず、アミド合成、縮合重合など、広くマイクロ波を使うことができる。

次回は具体的事例について更に紹介する。

本記事はマイクロ波化学株式会社からの寄稿記事です。

会社プロフィール

マイクロ波化学株式会社

マイクロ波を活用した製造プロセスの開発や、従来技術では製造困難な新素材開発に取り組む阪大発ベンチャーです。この技術は、医薬、電子材料、食品、燃料など、幅広い分野における製造プロセスへ応用が可能で、弊社は国内外の様々なメーカーとの共同開発や独自プラント立ち上げを通し、化学産業のオープンイノベーションを推進しています。

大阪府吹田市山田丘2番8号テクノアライアンス棟3階

代表番号:06-6170-7595

メール:info@mwcc.jp

URL:https://mwcc.jp/

Avatar photo

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 有機無機ハイブリッドペロブスカイトはなぜ優れているのか?
  2. 【ケムステSlackに訊いてみた③】化学で美しいと思うことを教え…
  3. 今冬注目の有機化学書籍3本!
  4. 【データケミカル】正社員採用情報
  5. レビュー多くてもよくね?
  6. マテリアルズ・インフォマティクスの推進を加速させるためには?
  7. トンネル構造をもつマンガン酸化物超微粒子触媒を合成
  8. Delta 6.0.0 for Win & Macがリリ…

注目情報

ピックアップ記事

  1. 水溶性ニッケル塩を利用したグリーンな銅ナノ粒子合成法の開発
  2. 「先端触媒構造反応リアルタイム計測ビームライン」が竣工
  3. 植物たちの静かな戦い
  4. ペラミビル / Peramivir
  5. 光触媒水分解材料の水分解反応の活性・不活性点を可視化する新たな分光測定手法を開発
  6. ケージ内で反応を進行させる超分子不斉触媒
  7. 立体電子効果―三次元の有機電子論
  8. 均一系水素化 Homogeneous Hydrogenaton
  9. 人前ではとても呼べない名前の化合物
  10. 分子構造を 3D で観察しよう (3):新しい見せ方

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年10月
 1234
567891011
12131415161718
19202122232425
262728293031  

注目情報

最新記事

アクリルアミド類のanti-Michael型付加反応の開発ーPd触媒による反応中間体の安定性が鍵―

第622回のスポットライトリサーチは、東京理科大学大学院理学研究科(松田研究室)修士2年の茂呂 諒太…

エントロピーを表す記号はなぜSなのか

Tshozoです。エントロピーの後日談が8年経っても一向に進んでないのは私が熱力学に向いてないことの…

AI解析プラットフォーム Multi-Sigmaとは?

Multi-Sigmaは少ないデータからAIによる予測、要因分析、最適化まで解析可能なプラットフォー…

【11/20~22】第41回メディシナルケミストリーシンポジウム@京都

概要メディシナルケミストリーシンポジウムは、日本の創薬力の向上或いは関連研究分野…

有機電解合成のはなし ~アンモニア常温常圧合成のキー技術~

(出典:燃料アンモニアサプライチェーンの構築 | NEDO グリーンイノベーション基金)Ts…

光触媒でエステルを多電子還元する

第621回のスポットライトリサーチは、分子科学研究所 生命・錯体分子科学研究領域(魚住グループ)にて…

ケムステSlackが開設5周年を迎えました!

日本初の化学専用オープンコミュニティとして発足した「ケムステSlack」が、めで…

人事・DX推進のご担当者の方へ〜研究開発でDXを進めるには

開催日:2024/07/24 申込みはこちら■開催概要新たな技術が生まれ続けるVUCAな…

酵素を照らす新たな光!アミノ酸の酸化的クロスカップリング

酵素と可視光レドックス触媒を協働させる、アミノ酸の酸化的クロスカップリング反応が開発された。多様な非…

二元貴金属酸化物触媒によるC–H活性化: 分子状酸素を酸化剤とするアレーンとカルボン酸の酸化的カップリング

第620回のスポットライトリサーチは、横浜国立大学大学院工学研究院(本倉研究室)の長谷川 慎吾 助教…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP