[スポンサーリンク]

一般的な話題

マイクロ波プロセスの工業化 〜環境/化学・ヘルスケア・電材領域での展開と効果〜(1)

[スポンサーリンク]

冒頭

マイクロ波化学は、1986年のTetrahedron Lettersに掲載された有機合成反応に端を発してから現在に至るまで、有機合成、ナノ粒子合成、重合、乾燥、焼成、フィルム加熱など様々な用途に適用されてきた。

実験室においては長らく新規プロセスとして研究され、数多く効果が確認・報告されている。しかしながら、化学プロセスとして工業化された例は無かった。

当社は、マイクロ波の反応系デザインおよび反応器デザインをプラットフォーム技術として、世界初のマイクロ波工場 (3,000 t/y以上、エステル合成/エステル交換、消防法対応込)を作って以降、様々なターゲットの事業化を推進してきた。

本シリーズでは、マイクロ波のアプリケーションに焦点を絞り、その原理や効果、経済的なメリット、新たなプロダクトの創出、スケールアップ事例について紹介する。

アプリケーション一覧表

下図は、マイクロ波応用例の一部である。中央にマイクロ波がエネルギー源として使用された単位操作(灰色)、周縁部にマイクロ波プロセスによって製造する物質を分野別に色分けして(青:ヘルスケア、赤:電材、緑:環境)表している。

マイクロ波の特長はその汎用性にあり、エネルギー源として、化学合成だけでなく、乾燥や分解、接着、焼成などさまざまな用途に応用が可能である。

 

マイクロ波との相性が良い系・悪い系

時間短縮・収率向上・無溶媒化・品質向上などさまざまなメリットが確認されているマイクロ波だが、ありとあらゆる系で優位性を発現できるわけではない。

下表に、マイクロ波との相性が良い例を示す。いずれにおいても、マイクロ波の選択加熱・直接加熱が前提となる。逆に、マイクロ波と相性の悪い代表例として挙げられるのが、低温反応である。マイクロ波は、特定の化学物質への選択的エネルギー伝達により微視的に非平衡的な局所加熱点を作る。これによって、反応促進等の効果を得るが、低温反応においては非平衡加熱を実現しにくい。

 

以降は、いくつかの具体的事例におけるマイクロ波の効果や優位性の原理について説明する。

プラスチックリサイクル(解重合、熱分解)

ESG経営、サーキュラーエコノミーの重要性が急速に増す昨今、ケミカルリサイクルはキーテクノロジーとして位置付けられている。しかし、高温な伝熱面との接触に依存した従来の外部加熱方式では、設備大型化、低効率、不純物生成などの課題が考えられる。

マイクロ波によるプラスチックケミカルリサイクルにおいては、反応場への波による直接的なエネルギー伝達が可能であるため、従来加熱のように高温な伝熱面(ジャケット加熱面)を必要としない。そのため、設備の小型化や設計温度の低減も可能である。さらに、化石燃料を必要とせず電気がエネルギー源となるため、コンビナートや既存工場の無い地域でのプラント立ち上げも可能である。

以下の例は、ポリエチレン (PE)の熱分解である。PEはマイクロ波を吸収しにくいため、反応系へ添加したマイクロ波吸収性のフィラーを選択的に加熱し、フィラーからの伝熱によりPEの分解を行う。外部伝熱面に依存する従来方式に比べると、伝熱面積が格段に大きく、また温度制御性やリアクター内部の温度分布も制御できるため、反応効率向上や選択率向上を期待できるものである。また、設備の小型化も同様に期待できる。

エステル合成(脱水反応)

マイクロ波化学反応は、脱水反応と非常に相性が良い。反応副生物である水を選択的に加熱し、系外へ除去することで、反応を促進することができるためである。また、反応速度向上に寄与するコンポーネント(Ex. 水や触媒)を選択的に加熱すればよいので、必ずしも系全体を加熱する必要がなく、低温化できるケースも見られる。

以下は、ブチルエステルの製造における、従来加熱(Ex. スチーム加熱)とマイクロ波加熱の経済性比較である。反応時間の短縮によって連続化を可能にし、低温化や収率向上も達成した。従来法に比べて、設備コストは1/3、消費エネルギーは1/4まで低減した。下の写真は当社保有のマイクロ波リアクターである。マイクロ波反応器は、連続式もしくはバッチ式、いずれも選択することができる。(写真は連続式)

また、脱水を伴う反応であれば、エステル合成に限らず、アミド合成、縮合重合など、広くマイクロ波を使うことができる。

次回は具体的事例について更に紹介する。

本記事はマイクロ波化学株式会社からの寄稿記事です。

会社プロフィール

マイクロ波化学株式会社

マイクロ波を活用した製造プロセスの開発や、従来技術では製造困難な新素材開発に取り組む阪大発ベンチャーです。この技術は、医薬、電子材料、食品、燃料など、幅広い分野における製造プロセスへ応用が可能で、弊社は国内外の様々なメーカーとの共同開発や独自プラント立ち上げを通し、化学産業のオープンイノベーションを推進しています。

大阪府吹田市山田丘2番8号テクノアライアンス棟3階

代表番号:06-6170-7595

メール:info@mwcc.jp

URL:https://mwcc.jp/

webmaster

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 有機合成化学協会誌2020年11月号:英文版特集号
  2. メタンハイドレートの化学
  3. ノーベル化学賞解説 on Twitter
  4. 第11回ケムステVシンポジウム「最先端精密高分子合成」を開催しま…
  5. 【速報】2016年ノーベル化学賞は「分子マシンの設計と合成」に!…
  6. (–)-Spirochensilide Aの不斉全合成
  7. 地方の光る化学企業 ~根上工業殿~
  8. 分子びっくり箱

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. OPRD誌を日本プロセス化学会がジャック?
  2. 化学工場災害事例 ~爆発事故に学ぶ~
  3. 「重曹でお掃除」の化学(その2)
  4. ラロック インドール合成 Larock Indole Synthesis
  5. 第55回―「イオン性液体と化学反応」Tom Welton教授
  6. 甲種危険物取扱者・合格体験記~cosine編
  7. 6年越しで叶えた“海外と繋がる仕事がしたい”という夢
  8. ブロモジメチルスルホニウムブロミド:Bromodimethylsulfonium Bromide
  9. 1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン:1,5,7-Triazabicyclo[4.4.0]dec-5-ene
  10. 夏の必需品ー虫除けスプレーあれこれ

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

芳香環交換反応を利用したスルフィド合成法の開発: 悪臭問題に解決策

第 326回のスポットライトリサーチは、早稲田大学理工学術院 山口潤一郎研究室 …

ゼナン・バオ Zhenan Bao

ゼナン(Zhenan Bao, 1970年xx月xx日-)は、アメリカの有機材料科学者、カーボンナノ…

文具に凝るといふことを化学者もしてみむとてするなり⑭: 液タブ XP-PEN Artist 13.3 Proの巻

少し前にペンタブレット「XP-PEN Deco01」を紹介しましたが、もう少しお金をかけると液晶ペン…

定番フィルム「ベルビア100」が米国で販売中止。含まれている化学薬品が有害指定に

富士フイルムのリバーサルフィルム「フジクローム ベルビア100」が、米国で販売ストップとなりました。…

話題のAlphaFold2を使ってみた

ここ数日、構造生物学界隈で「AlphaFold2」と呼ばれているタンパク質の構造…

フェリックス・カステラーノ Felix N. Castellano

フェリックス・カステラーノ(Felix N. Castellano、19xx年x月xx日(ニューヨー…

「第22回 理工系学生科学技術論文コンクール」の応募を開始

日刊工業新聞社とモノづくり日本会議は、理工系学生(大学生・修士課程の大学院生、工業高等専門学校生)を…

みんなおなじみ DMSO が医薬品として承認!

2021年1月22日、間質性膀胱炎治療薬ジメチルスルホキシド (商品名ジムソ膀胱内注…

Chem-Station Twitter

PAGE TOP