[スポンサーリンク]

一般的な話題

マイクロ波プロセスの工業化 〜環境/化学・ヘルスケア・電材領域での展開と効果〜(1)

[スポンサーリンク]

冒頭

マイクロ波化学は、1986年のTetrahedron Lettersに掲載された有機合成反応に端を発してから現在に至るまで、有機合成、ナノ粒子合成、重合、乾燥、焼成、フィルム加熱など様々な用途に適用されてきた。

実験室においては長らく新規プロセスとして研究され、数多く効果が確認・報告されている。しかしながら、化学プロセスとして工業化された例は無かった。

当社は、マイクロ波の反応系デザインおよび反応器デザインをプラットフォーム技術として、世界初のマイクロ波工場 (3,000 t/y以上、エステル合成/エステル交換、消防法対応込)を作って以降、様々なターゲットの事業化を推進してきた。

本シリーズでは、マイクロ波のアプリケーションに焦点を絞り、その原理や効果、経済的なメリット、新たなプロダクトの創出、スケールアップ事例について紹介する。

アプリケーション一覧表

下図は、マイクロ波応用例の一部である。中央にマイクロ波がエネルギー源として使用された単位操作(灰色)、周縁部にマイクロ波プロセスによって製造する物質を分野別に色分けして(青:ヘルスケア、赤:電材、緑:環境)表している。

マイクロ波の特長はその汎用性にあり、エネルギー源として、化学合成だけでなく、乾燥や分解、接着、焼成などさまざまな用途に応用が可能である。

 

マイクロ波との相性が良い系・悪い系

時間短縮・収率向上・無溶媒化・品質向上などさまざまなメリットが確認されているマイクロ波だが、ありとあらゆる系で優位性を発現できるわけではない。

下表に、マイクロ波との相性が良い例を示す。いずれにおいても、マイクロ波の選択加熱・直接加熱が前提となる。逆に、マイクロ波と相性の悪い代表例として挙げられるのが、低温反応である。マイクロ波は、特定の化学物質への選択的エネルギー伝達により微視的に非平衡的な局所加熱点を作る。これによって、反応促進等の効果を得るが、低温反応においては非平衡加熱を実現しにくい。

 

以降は、いくつかの具体的事例におけるマイクロ波の効果や優位性の原理について説明する。

プラスチックリサイクル(解重合、熱分解)

ESG経営、サーキュラーエコノミーの重要性が急速に増す昨今、ケミカルリサイクルはキーテクノロジーとして位置付けられている。しかし、高温な伝熱面との接触に依存した従来の外部加熱方式では、設備大型化、低効率、不純物生成などの課題が考えられる。

マイクロ波によるプラスチックケミカルリサイクルにおいては、反応場への波による直接的なエネルギー伝達が可能であるため、従来加熱のように高温な伝熱面(ジャケット加熱面)を必要としない。そのため、設備の小型化や設計温度の低減も可能である。さらに、化石燃料を必要とせず電気がエネルギー源となるため、コンビナートや既存工場の無い地域でのプラント立ち上げも可能である。

以下の例は、ポリエチレン (PE)の熱分解である。PEはマイクロ波を吸収しにくいため、反応系へ添加したマイクロ波吸収性のフィラーを選択的に加熱し、フィラーからの伝熱によりPEの分解を行う。外部伝熱面に依存する従来方式に比べると、伝熱面積が格段に大きく、また温度制御性やリアクター内部の温度分布も制御できるため、反応効率向上や選択率向上を期待できるものである。また、設備の小型化も同様に期待できる。

エステル合成(脱水反応)

マイクロ波化学反応は、脱水反応と非常に相性が良い。反応副生物である水を選択的に加熱し、系外へ除去することで、反応を促進することができるためである。また、反応速度向上に寄与するコンポーネント(Ex. 水や触媒)を選択的に加熱すればよいので、必ずしも系全体を加熱する必要がなく、低温化できるケースも見られる。

以下は、ブチルエステルの製造における、従来加熱(Ex. スチーム加熱)とマイクロ波加熱の経済性比較である。反応時間の短縮によって連続化を可能にし、低温化や収率向上も達成した。従来法に比べて、設備コストは1/3、消費エネルギーは1/4まで低減した。下の写真は当社保有のマイクロ波リアクターである。マイクロ波反応器は、連続式もしくはバッチ式、いずれも選択することができる。(写真は連続式)

また、脱水を伴う反応であれば、エステル合成に限らず、アミド合成、縮合重合など、広くマイクロ波を使うことができる。

次回は具体的事例について更に紹介する。

本記事はマイクロ波化学株式会社からの寄稿記事です。

会社プロフィール

マイクロ波化学株式会社

マイクロ波を活用した製造プロセスの開発や、従来技術では製造困難な新素材開発に取り組む阪大発ベンチャーです。この技術は、医薬、電子材料、食品、燃料など、幅広い分野における製造プロセスへ応用が可能で、弊社は国内外の様々なメーカーとの共同開発や独自プラント立ち上げを通し、化学産業のオープンイノベーションを推進しています。

大阪府吹田市山田丘2番8号テクノアライアンス棟3階

代表番号:06-6170-7595

メール:info@mwcc.jp

URL:https://mwcc.jp/

webmaster

webmaster

投稿者の記事一覧

Chem-Station代表。早稲田大学理工学術院教授。専門は有機化学。主に有機合成化学。分子レベルでモノを自由自在につくる、最小の構造物設計の匠となるため分子設計化学を確立したいと考えている。趣味は旅行(日本は全県制覇、海外はまだ20カ国ほど)、ドライブ、そしてすべての化学情報をインターネットで発信できるポータルサイトを作ること。

関連記事

  1. 【2021年卒業予定 修士1年生対象】企業での研究開発を知る講座…
  2. ルドルフ・クラウジウスのこと① エントロピー150周年を祝って
  3. 進撃のタイプウェル
  4. 研究者向けプロフィールサービス徹底比較!
  5. JSRとはどんな会社?-1
  6. 第2回慶應有機合成化学若手シンポジウム
  7. 肝はメチル基!? ロルカセリン
  8. サイコロを作ろう!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 有機合成化学協会誌2019年2月号:触媒的脱水素化・官能性第三級アルキル基導入・コンプラナジン・アライン化学・糖鎖クラスター・サリチルアルデヒド型イネいもち病菌毒素
  2. バトフェナントロリン : Bathophenanthroline
  3. みんな大好きBRAINIAC
  4. ニュースタッフ追加
  5. マイクロ波とイオン性液体で単層グラフェン大量迅速合成
  6. フロインターベルク・シェーンベルク チオフェノール合成 Freunderberg-Schonberg Thiophenol Synthesis
  7. 「神経栄養/保護作用を有するセスキテルペン類の全合成研究」ースクリプス研究所 Ryan Shenvi研より
  8. 第七回ケムステVシンポジウム「有機合成化学の若い力」を開催します!
  9. 特許の基礎知識(3) 方法特許に注意! カリクレイン事件の紹介
  10. 試験概要:乙種危険物取扱者

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

三井化学岩国大竹工場の設備が未来技術遺産に登録

三井化学はこのほど、岩国大竹工場(山口県和木町)にあるポリエチレン製造装置が、国立科学博物館により、…

【金はなぜ金色なの?】 相対論効果 Relativistic Effects

相対性理論は、光速近くで運動する物体で顕著になる現象を表した理論です。電子や原子などのミクロな物質を…

gem-ジフルオロアルケンの新奇合成法

トリフロンにグリニャール試薬を作用させるだけで多置換gem-ジフルオロアルケンの合成に成功した。フッ…

パーソナル有機合成装置 EasyMax 402 をデモしてみた

合成装置といえばなにを思い浮かべるでしょうか?いま話題のロボット科学者?それともカップリング…

湿度によって色が変わる分子性多孔質結晶を発見

第277回のスポットライトリサーチは、筑波大学 数理物質系 山本研究室 助教の山岸 洋(やまぎし ひ…

【書籍】機器分析ハンドブック1 有機・分光分析編

kindle版↓概要はじめて機器を使う学生にもわかるよう,代表的な分析機器の…

第46回「趣味が高じて化学者に」谷野圭持教授

第46回目の研究者インタビューです。今回のインタビューは第10回目のケムステVシンポ講演者の一人であ…

【山口代表も登壇!!】10/19-11/18ケミカルマテリアルJapan2020-ONLINE-

「ケミカルマテリアルJapan2020-ONLINEー(主催:株式会社化学工業日報社)」は、未来に向…

Chem-Station Twitter

PAGE TOP