[スポンサーリンク]

化学者のつぶやき

メチレン炭素での触媒的不斉C(sp3)-H活性化反応

[スポンサーリンク]

 不活性メチレンC(sp3)-H結合を位置選択的に活性化し、炭素-炭素結合を高収率・高エナンチオ選択性で形成できる不斉パラジウム触媒が、スクリプス研究所・Yuらのグループによって開発された。独自開発した不斉二座配位子APAQがもたらす配位子加速効果が成功の鍵である。

“Ligand-Accelerated Enantioselective Methylene C(sp3)-H Bond Activation”
Chen, G.; Gong, W.; Zhuang, Z.; Andrea, M. S.; Chen, Y.-Q.; Hong, X.; Yang, Y.-F.; Liu, T.; Houk, K. N.*; Yu, J.-Q.* Science 2016, 353, 1023. DOI: 10.1126/science.aaf4434

問題設定と解決した点

 メチレン炭素上のプロキラルな不活性C(sp3)-H結合を区別した変換を行なうことは従来困難な課題とされていた。カルベン/ナイトレン挿入反応形式、非対称化反応形式、高反応性のシクロプロピル・シクロブチル基を標的とした特殊系での報告はあったが、炭素-金属結合形成を経る一般系の報告は存在しなかった。

 本報告はメチレンC-H活性化、鎖状基質への適用、位置選択性(β位)の発現、分子間C-C結合形成、エナンチオ選択的変換を全て充足しており、触媒的不斉合成分野の最難関課題をクリアしたマイルストーン的成果といえる。

技術・手法の肝

 独自開発した不斉配位子APAQによる配位子加速効果の獲得、および弱配位性単座配向基 (ArF = p-CF3C6F4アミド)の活用により配位子解離を防ぎ、ラセミバックグラウンド反応を抑制していることが最大のポイント。

 全く新規な骨格の不斉配位子は、一つ一つ合成し適用するというごくごく地道な検討が必要だが、可能性は無限に存在するため、なんらかの指針で手数を絞る必要がある。Yuらはまず2-オキシ縮環ピリジン配位子に不斉点を導入する[1]アプローチを検討したものの、単座配位子では効果が薄かった。ある時点でEllmannイミンから容易に合成可能な6員環キレート二座配位構造の探索と舵を切っている。アシル保護アミノ酸リガンドの知見[2]も活用し、アセトアミド部位を採用したことが勝因。

APAQ配位子の合成法

主張の有効性検証

 基質一般性はそれなりに高く、F/Cl/Br/CF3、フタルイミド、ケトン、エーテル、エステル、リン酸エステル、Tsアミドなどが共存してもOK。立体障害には少し弱そうな印象。アセトアミド酸素がC-H切断の加速に寄与しているとの遷移状態(TS)計算結果も提示。

基質リストの抜粋

議論すべき点

  • 特殊なアミド配向基(ArF)を導入しなくてはならない。いずれカルボン酸配向基などへの拡張が成されれば、高い一般性・応用性をもつ反応系が実現できるだろう。
  • C-H活性化の位置はβ位に限定されている。一般論としてβ位より遠隔(γ,δ・・・)は選択的活性化が難しい。配向基や配位子のデザインによってβ位より遠隔の変換を行なうことを考案したい。
  • ロジウム触媒によるアリールボロン酸の不斉共役付加と同じ構造の生成物になってしまう。α,β不飽和アミドが作れない基質には適するとの主張だが、合成的強みという面ではまだまだか。
  • アミドα位に置換基があるものは基質リストに含まれない。ArFアミドの合成法に由来する制限ではないだろうか。
  • 実際にはこの系に行き着くまでに、恐ろしいほどのリソースが注ぎ込まれている[3]。普通のラボではなかなかここまでやれない・・・。

次に読むべき論文は?

  • カルボン酸そのものを配向基としてメチレンsp3 C-H活性化(非不斉)を進行させる触媒系。
  • J.-Q.Yu研が蓄積を持つ、パラジウムC-H活性化触媒における配位子加速効果とその構造活性相関[2]。
  • 第一列遷移金属によって内圏型C(sp3)-H活性化を行なっている触媒系。
  • β位よりも遠隔位の不活性C(sp3)-H結合を位置選択的に変換している触媒系。

参考文献

  1. (a) M. Wasa et al., J. Am. Chem. Soc. 2012, 134, 18570. DOI: 10.1021/ja309325e (b) J. He et al., Angew. Chem. Int. Ed. 2016, 55, 785. DOI: 10.1002/anie.201509996
  2. (a) B.-F. Shi, N. Maugel, Y.-H. Zhang, J.-Q. Yu, Angew. Chem. Int. Ed. 2008, 47, 4882. DOI: 10.1002/anie.200801030 (b) K. S. L. Chan et al., Nat. Chem. 2014, 6, 146. doi:10.1038/nchem.1836 (c) D. G. Musaev, A. Kaledin, B.-F. Shi, J.-Q. Yu, J. Am. Chem. Soc. 2012, 134, 1690. DOI: 10.1021/ja208661v (d) G.-J. Cheng et al., J. Am. Chem. Soc. 2014, 136, 894. DOI: 10.1021/ja411683n
  3. Stu Borman, C&EN 2016, 94, 7.
The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. その反応を冠する者の名は
  2. 化学のうた
  3. 尿から薬?! ~意外な由来の医薬品~ その2
  4. スルホキシイミンを用いた一級アミン合成法
  5. 有機反応を俯瞰する ー挿入的 [1,2] 転位
  6. タキサン類の全合成
  7. ホウ素ーホウ素三重結合を評価する
  8. 芳香族化合物のC–Hシリル化反応:第三の手法

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 2018年1月20日:ケムステ主催「化学業界 企業研究セミナー」
  2. Nature Catalysis創刊!
  3. 英文読解の負担を減らすマウスオーバー辞書
  4. 第六回 電子回路を合成するー寺尾潤准教授
  5. 天然物の生合成に関わる様々な酵素
  6. 新日石、地下資源開発に3年で2000億円投資
  7. 第23回 医療、工業、軍事、広がるスマートマテリアル活躍の場ーPavel Anzenbacher教授
  8. 化学・バイオつくば財団賞:2研究が受賞 /茨城
  9. 文具に凝るといふことを化学者もしてみむとてするなり⑪:どっちもクリップの巻
  10. できる研究者の論文作成メソッド 書き上げるための実践ポイント

関連商品

注目情報

注目情報

最新記事

日本初の化学専用オープンコミュニティ、ケムステSlack始動!

もし日常的に、様々な分野の日本中の化学徒・研究者と、最先端の化学について自由闊達に議論を交わし合い、…

HACCP制度化と食品安全マネジメントシステムーChemical Times特集より

関東化学が発行する化学情報誌「ケミカルタイムズ」。年4回発行のこの無料雑誌の紹介をしています。…

農薬メーカの事業動向・戦略について調査結果を発表

 この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=川原喜治)は、農薬…

書店で気づいたこと ~電気化学の棚の衰退?~

Tshozoです。少し短いですが以前から気になっていたので書いておきます。また少々電気化学系…

白い器を覆っている透明なガラスってなんだ?

白い器を覆っている"透明なガラス"が何から出来ているのか気になりませんか?今回は、皆さんがよく目にす…

林 雄二郎博士に聞く ポットエコノミーの化学

雑誌「現代化学」の特集インタビュー記事から、東北大学林雄二郎先生のインタビュー(2019年5月号掲載…

Chem-Station Twitter

PAGE TOP