[スポンサーリンク]

一般的な話題

クロスカップリング用Pd触媒 小ネタあれこれ

[スポンサーリンク]

am

 

有機化学者の必須ツール「クロスカップリング用  Pd触媒」について、いくつか小ネタが溜まってきたので、ここらでまとめて晒しておきます。

*筆者は単なる反応ユーザーであって、クロスカップリング反応や触媒のプロではありません。また、人から聞いた話を並べるだけで、自分で裏付け確認して無いことばかり書きます。間違ってても許してね。

やっぱ基本はテトラキス?

tetrakis.png

昔からよく使われている触媒 Pd(PPh3)4、通称「テトラキス」。最近の動向では「e-richなリガンドをもつ触媒が高活性だ」という事になってますが、経験的には色々検討し たけどテトラキスでのみ目的物得られた、なんて事もあるので、検討項目には入れといた方が良いでしょう。

こいつの弱点は、温度/酸素への 安定性に乏しく、試薬瓶の蓋の開け閉めに伴って瓶中に混入する酸素によって徐々に分解し、明るい黄色⇒オレンジ⇒茶色⇒灰色と変色して活性を失います(オ レンジ超えたら使いたくないですねぇ)。噂では、UVランプの長波長当てて、キラキラ光れば活性ありだとか… 私は試薬購入したらば全量をナスフラスコに移し窒素置換し冷凍庫に放り込んじゃいます。

やったことなくて恐縮ですが、合成は簡単みたいです(こちらのブログに写真あり)
1. 塩化パラジウム(Ⅱ)とトリフェニルホスフィンをDMSO溶媒中でかき混ぜる
2. ヒドラジンを入れる
3. 固体をろ過 ⇒ DMSOを洗い減圧乾燥

さらにこちらのブログには ” I will never really understand why people bother to buy “ とまで書かれてます!(そんな事言っても、つくった事ないから買っちゃうんだよねぇ…)

 

Pd2(dba)3:安定なパラジウムソース ??

pddba.png

Pd とリガンドを別々に入れる際に使うPdソースは、Pd2(dba)3とPd(OAc)2とが代表選手でしょうかね?

通称「ディービーエー」。こいつには色々亜流があって混乱しますね:Pd2(dba)3, Pd(dba)2, Pd2(dba)3,-CHCl3, Pd2(dba)3,-n(dba), etc… ところが、この亜流には意味は無いようです!?

Pd触媒製造の世界的メーカーの方に話を聞いたのですが「Pd2(dba)3と Pd(dba)2はどちらも嘘で、Pd に対してもっと過剰にdbaが無いと錯形成せずにPd black で沈殿してしまう。どれもPd2(dba)3-n(dba)が正しい」です。 更には「試薬の中のPdがどれだけ錯形成していて、どれだけ Pd blackが混じってるか解らない。製法によるからサプライヤーによって違うハズ」だそーで、マジすか!?今まで信じてたのに…

Pd2(dba)3,-CHCl3(クロロホルム錯体)だけが、きちんと量論比に従った均一の錯形成をするそうです。そういえば、大昔に先輩から「室温でクロロホルムが飛んじゃうから冷蔵保存する」と言われたんですが、、、ホント???

 

Buchwald リガンド & follwers

buchwaldligand.png

Buchwaldらは Xphos等のdialkylbiaryl phosphineがPdクロスカップリングの良いリガンドになる事を見いだしており、これらは通称 Buchwald リガンド と呼ばれます。

有名どころは、JohnPhos, SPhos, XPhos, DavePhos, RuPhos, BrettPhosといった所でしょうか?(AldrichのHPにまとめられています)。やっぱ気になるのがその名前ですよね。

MIT に留学していた方に聞いたところ「あれはリガンドを合成した学生の名前。僕はJohnもBurettも知ってる」とのことです。リガンドに自分の名前が付いて世界中で使われるとなれば、研究者冥利につきますね!そうやってラボメンバーのモチベーションを上げるのが Buchwald のマネジメント手法のようです。

Buchwaldグループ以外から、特に企業からのBuchwald型リガンド(似て非なるリガンド)の研究報告も目に付きます。Buchwaldリガン ドはMITの特許があるため、研究目的外の「生産」段階ではライセンス料を支払う必要が出てくるので、特許クレーム外のリガンドを研究する必要があるそう です。そうしてfollowersが生まれる訳です。(同様の事例は、不斉水素化での野依触媒、オレフィンメタセシスでのGrubbs触媒の特許抜け followersでもよく見られます。)

 

Fuリガンドの最近

fuPtBu3.png

おそらく最強の電子供与性をもつ trialkyl phosphine、 通称「Fuリガンド」ですが、PtBu3は酸素に不安定で速やかに酸化されてしまうため、窒素下での秤量・溶存酸素の厳密なケアが必要となり、なかなか使い難いリガンドでした。というか、私の雑な実験では、うまく反応がいった試しがありません。

最も不安定なのは trialkyl phosphine 単体状態であり、錯体となれば安定性が増します。そこで最近ではtrialkyl phosphine そのものを秤量するのではなく、

  1. Tri-tert-butylphosphonium Tetrafluoroborate を中和して系中発生させる
  2. Bis(tri-tert-butylphosphine)palladium(0) 錯体を始めから用いる

の2つの方法が汎用され、安定した反応仕込みが達成されています。

 

PdCl2(dppf) & followers

pdcldppf.png

PdCl2(dppf)は安定・優秀なクロスカップリング触媒で、私は鈴木・宮浦カップリングを行う時の第一選択にしています。論文にも頻出しますね。

ですが、反応性の乏しい基質では、より電子供与性の高いリガンドが欲しくなるところ。そこで最近流行りつつあるのが ” dtbpf ” と “ Amphos” です。Amphosは、Amgen社のケミストにより生み出されたリガンドですが、彼らは特許出願をしなかったので、その優れた活性と併せて権利的にも使い易い触媒となっています。

【追記】ちなみに現在(2014年12月)では関東化学の価格が最も安価でおすすめです。定価 1g ¥9,000 5g ¥ 30,000 詳細はこちら

どちらも電子供与性の高い tBu基を有し高活性でありつつも、高い安定性も併せ持ち、空気中での秤量・室温保存を可能としています。思った以上に使い易いので、これからカップリング触媒の第一選択にしよっかな?

NHCリガンド

nhcmetalcomplex.png

Grubbs Ru触媒で大輪の花を咲かせた NHC リガンドが、 クロスカップリングPd触媒においても展開をみせはじめております。PEPPSIumicore社触媒など種々市販されています。

特徴としては反応活性が高いという点はもちろんですが、最大の特徴は「触媒の堅牢性が高い事」にあるようです。他の触媒と異なり、NHCリガンド錯体は反応終了後も錯体状態を保つそうで、

  1. 分液すると錯体のまま有機相にいく (Pd blackは出てこない)
  2. 有機溶媒によく溶けるので、再結晶で除ける
  3. シリカ/アルミナ等の濾過で原点に保持される (テーリングして目的物に混入しない)

等の特徴を有しており、結果として目的物との分離に優れるそうです。医薬品を始めとする生物活性物質の合成には、最終生成物へのPd混入量は低レベルに規定する必要があるので、分離良好なNHC錯体は今後ますます流行るような気がします。

 

 

以上、最近仕入れたPdネタ集でした。その他に面白いネタがあれば教えてください!

 

関連記事

 

関連リンク

関連記事

  1. クロスカップリングはどうやって進行しているのか?
  2. MEDCHEM NEWS 32-1号「機械学習とロボティックス特…
  3. 生命が居住できる星の条件
  4. トーンカーブをいじって画像加工を見破ろう
  5. ダイアモンドの双子:「神話」上の物質を手のひらに
  6. プロセス化学ー合成化学の限界に挑戦するー
  7. DNAナノ構造体が誘起・制御する液-液相分離
  8. ビュッヒ・フラッシュクロマト用カートリッジもれなくプレゼント!

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. マテリアルズ・インフォマティクスを実践するためのベイズ最適化入門 -デモンストレーションで解説-
  2. アスパルテーム /aspartame
  3. 細見・櫻井アリル化反応 Hosomi-Sakurai Allylation
  4. 第96回―「発光機能を示す超分子・ナノマテリアル」Luisa De Cola教授
  5. 第18回 出版業務が天職 – Catherine Goodman
  6. なぜクロスカップリングは日本で発展したのか?
  7. 直接クプラート化によるフルオロアルキル銅錯体の形成と応用
  8. 転位のアスレチック!(–)-Retigeranic acid Aの全合成
  9. オペレーションはイノベーションの夢を見るか? その3+まとめ
  10. “follow”は便利!

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2012年11月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

最新記事

【速報】2023年ノーベル化学賞は「量子ドットの発見と合成」へ!

2023年のノーベル化学賞は「量子ドットの発見と合成」の業績で、マサチューセッツ工科大学のMoung…

エキモフ, アレクセイ イワノビッチ Екимов, Алексей Иванович

エキモフ, アレクセイ イワノビッチ(Екимов, Алексей Иванович, Alexe…

ルイ・E. ・ブラス Louis E. Brus

ルイ・ユージーン・ブラス (Louis Eugene Brus, 1943年8月10日-, オハイオ…

モウンジ・バウェンディ Moungi G Bawendi

モウンジ・バウェンディ (Moungi G Bawendi 1961年3月15日 パリ生まれ)はアメ…

マテリアルズ・インフォマティクスにおける分子生成の基礎

開催日:2023/10/11 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

はやぶさ2が持ち帰った有機化合物

小惑星リュウグウから始原的な「塩(Salt)」と有機硫黄分子群を発見(9月18日JAMSTECプレス…

Let’s Make Wave , Make World. −マイクロ波で!プロセス革新ワークショップ −

<内容>マイクロ波のプロと次世代プロセスへの転換に向けた勘所を押さえ、未来に向けたイノベーシ…

ゲルマベンゼニルアニオンを用いた単原子ゲルマニウム導入反応の開発

第566回のスポットライトリサーチは、京都大学化学研究所 物質創成化学研究系 有機元素化学領域 (山…

韮山反射炉に行ってみた

韮山反射炉は1857年に完成した静岡県伊豆の国市にある国指定の史跡(史跡名勝記念物)で、2015年に…

超高圧合成、添加剤が選択的物質合成の決め手に -電池材料等への応用に期待-

第565回のスポットライトリサーチは、東京工業大学 科学技術創成研究院 フロンティア材料研究所 東・…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP