[スポンサーリンク]

化学者のつぶやき

(–)-Spirochensilide Aの不斉全合成

[スポンサーリンク]

()-Spirochensilide A初の不斉全合成が達成された。タングステンを用いたシクロプロペンとアルキンのPauson–Khand反応によるスピロ環構築が鍵となる。

(–)-Spirochensilide A

モミ属(Abies)の粗抽出物や代謝物は抗腫瘍や抗菌、抗潰瘍性、抗炎症、鎮咳といった生物活性をもち、これまでにモミ属から250を超えるテルペノイドとその類縁体が単離されてきた[1]

2015年にGaoらによって、中国の固有種であるAbies chensiensisからspirochensilide A(1)、B(2)およびそれらの生合成前駆体と考えられる化合物3が単離、構造決定された(図1A)[1]

1の構造的特徴としては、2組の隣接する不斉四級炭素(C8/C10およびC13/C17)とスピロ[4.5]環(BC環)、およびスピロケタール骨格(EF環)を有することが挙げられる。二つのスピロ環を有する六環性骨格の効率的構築が1の全合成における課題となる。また、1はマウスマクロファージ細胞株に対する一酸化窒素産生阻害活性を示し、炎症性疾患研究への応用が期待される[2]

Gaoらは1の生合成仮説を次のように提唱している(図1B)。まず3が酸化されてエポキシド4を生成し、House–Meinwald転位によって5を与える。5は位置選択的なC–H酸化を受け6となり、Wagner–Meerwein転位を経て7が生成する。続く分子内アリル位酸化およびエーテル化、カルボニル基の還元により1が生成すると考えられている。しかし本生合成仮説はHouse–Meinwald転位が進行せず実証には至っていない。

今回、北京大学のYang教授らは12の全合成の報告例がない中、8から全22工程、総収率2.2%で(–)-1の初の全合成を達成した(図1C)。House–Meinwald転位でB環を、タングステンを用いたシクロプロペン10の分子内Pauson–Khand反応によりCD環を構築し、スピロ環骨格を形成したことが本合成の特徴である。

図1 (A)の構造 (B) 1の生合成仮説 (C) 逆合成解析

 

“Asymmetric Total Synthesis of ()-Spirochensilide A”

Liang, X.-T.; Chen, J.-H.; Yang, Z. J. Am. Chem. Soc. 2020, 142, 8116–8121.

DOI: 10.1021/jacs.0c02522

論文著者の紹介


研究者:Zhen Yang  

研究者の経歴:
1978–1982 B.S., Shenyang Pharmaceutical University, China
1983–1986 M.S., Shenyang Pharmaceutical University, China (Prof. Qihuai Chen)
1989–1992 Ph.D. The Chinese University of Hong Kong, China (Prof. Henry N. C. Wong)
1992–1995 Postdoc, The Scripps Research Institute, USA (Prof. K. C. Nicolaou)
1995–1998 Assistant professor, The Scripps Research Institute, USA
1998–2001 Institute Fellow, Harvard Medical School
2001– Professor, Peking University Shenzhen Graduate School, China

研究内容:合成方法論の開発、天然物合成、化学遺伝学

論文の概要

まず、エポキシド8から二工程で二環式化合物12を合成した。続いてmCPBAでエポキシ化し、中間体13としたのち、ルイス酸によるHouse–Meinwald転位でアルデヒド14へと誘導した。

次に有機リチウム試薬を付加させ、側鎖にシクロプロペンを導入した。続くPauson–Khand反応を詳細に検討したところ、W(CO)3(MeCN)3を触媒として用いた場合に、目的のジアステレオマー16aが収率30%で得られることを見出した[3]。本反応は環歪みのあるオレフィンを用いることが鍵であった[4]。そして、二工程で17を合成し、Birch条件下還元的にシクロプロパンを開環することで18とした。

その後、ホウ素エノラートを用いたアルドール反応により19のみを単一の異性体として与えた。なお、考え得る六員環遷移状態のうち、19の立体化学を与える遷移状態TS-Aが最安定であることが、DFT計算によって示されている。

続いて、得られたアルドール成績体から五工程の変換によりアリルアルコール20へと導いた。一重項酸素によりフラン環を酸化開裂したのち酸処理することでスピロケタール21とした。最後に種々の官能基変換を経て(–)-1の全合成を達成した。

図2 Spirochensilide Aの合成

 

以上、全22工程で(–)-1の初の不斉全合成が達成された。今後、合成研究と生物学的研究のさらなる展開が期待される。

参考文献

  1. Zhao, Q.-Q.; Song, Q.-Y.; Jiang, K.; Li, G.-D.; Wei, W.-J.; Li, Y.; Gao, K. Spirochensilides A and B, Two New Rearranged Triterpenoids from Abies Chensiensis. Org. Lett. 2015, 17, 2760–2763. DOI: 1021/acs.orglett.5b01166
  2. Yamamoto, Y.; Gaynor, R. B. Therapeutic Potential of Inhibition of the NF-κB Pathway in the Treatment of Inflammation and Cancer. J. Clin. Invest. 2001, 107, 135–142. DOI: 10.1172/JCI11914
  3. (a) Hoye, T. R.; Suriano, J. A. A [W(CO)5THF]-Mediated Pauson-Khand Reaction: Cyclizations of 1,6-Enynes via a Batch- Catalytic Protocol. J. Am. Chem. Soc. 1993, 115, 1154–1516. DOI: 10.1021/ja00056a053 (b) García-García, P.; Fernańdez-Rodríguez, M. A.; Rocaboy, C.; Andina, F.; Aguilar, E. A Sub-Stoichiometric Tungsten-Mediated Pauson−Khand Reaction: Scope and Limitations. J. Organomet. Chem. 2008, 693, 3092–3096. DOI: 10.1016/j.jorganchem.2008.06.032
  4. Pallerla, M. K.; Fox, J. M. Diastereoselective Intermolecular Pauson–Khand Reactions of Chiral Cyclopropenes. OrgLett. 2005, 7, 3593–3595. DOI: 10.1021/ol051456u (b) Pallerla, M. K.; Fox, J. M. Enantioselective Synthesis of (–)-Pentalenene. Org. Lett. 2007, 9, 5625–5628. DOI: 10.1021/ol702597y (c) Pallerla, M. K.; Yap, G. P. A.; Fox, J. M. Co-Complexes Derived from Alkene Insertionto Alkyne-Dicobaltpentacarbonyl Complexes: Insight into the Regioselectivity of Pauson–Khand Reactions of Cyclopropenes. J. Org. Chem. 2008, 73, 6137–6141. DOI: 10.1021/jo800776z

関連書籍

[amazonjs asin=”3642440924″ locale=”JP” title=”Total Synthesis of Natural Products: At the Frontiers of Organic Chemistry”]
Avatar photo

山口 研究室

投稿者の記事一覧

早稲田大学山口研究室の抄録会からピックアップした研究紹介記事。

関連記事

  1. 有機反応を俯瞰する ー芳香族求電子置換反応 その 2
  2. Rice cooker
  3. 青色LEDで駆動する銅触媒クロスカップリング反応
  4. 還元された酸化グラフェン(その1)
  5. 電池材料におけるマテリアルズ・インフォマティクスの活用
  6. ナノスケールの虹が世界を変える
  7. アセタールで極性転換!CF3カルビニルラジカルの求核付加反応
  8. タングトリンの触媒的不斉全合成

注目情報

ピックアップ記事

  1. 甲種危険物取扱者・合格体験記~カルダモン編
  2. イミンアニオン型Smiles転位によるオルトヒドロキシフェニルケチミン合成法の開発
  3. 【速報】2010年ノーベル生理医学賞決定ーケンブリッジ大のエドワード氏
  4. サリドマイドが骨髄腫治療薬として米国で承認
  5. 化学研究ライフハック:縦置きマルチディスプレイに挑戦!
  6. 玉尾皓平 Kohei Tamao
  7. Chem-Stationついに7周年!
  8. タンパク質の非特異吸着を抑制する高分子微粒子の合成と応用
  9. CIPイノベーション共創プログラム「世界に躍進する創薬・バイオベンチャーの新たな戦略」
  10. 乙卯研究所 研究員募集

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2020年7月
 12345
6789101112
13141516171819
20212223242526
2728293031  

注目情報

最新記事

粉末 X 線回折の基礎知識【実践·データ解釈編】

粉末 X 線回折 (powder x-ray diffraction; PXRD) は、固体粉末の試…

異方的成長による量子ニードルの合成を実現

第693回のスポットライトリサーチは、東京大学大学院理学系研究科(佃研究室)の髙野慎二郎 助教にお願…

miHub®で叶える、研究開発現場でのデータ活用と人材育成のヒント

参加申し込みする開催概要多くの化学・素材メーカー様でMI導入が進む一…

医薬品容器・包装材市場について調査結果を発表

この程、TPCマーケティングリサーチ株式会社(本社=大阪市西区、代表取締役社長=松本竜馬)は、医…

X 線回折の基礎知識【原理 · 基礎知識編】

X 線回折 (X-ray diffraction) は、原子の配列に関する情報を得るために使われる分…

有機合成化学協会誌2026年1月号:エナミンの極性転換・2-メチル-6-ニトロ安息香酸無水物(MNBA)・細胞内有機化学反応・データ駆動型マルチパラメータスクリーニング・位置選択的重水素化法

有機合成化学協会が発行する有機合成化学協会誌、2026年1月号がオンラインで公開されています。…

偶然と観察と探求の成果:中毒解毒剤から窒素酸化物を窒素分子へ変換する分子へ!

第692回のスポットライトリサーチは、同志社大学大学院理工学研究科(小寺・北岸研究室)博士後期課程3…

嬉野温泉で論文執筆缶詰め旅行をしてみた【化学者が行く温泉巡りの旅】

論文を書かなきゃ!でもせっかくの休暇なのでお出かけしたい! そうだ!人里離れた温泉地で缶詰めして一気…

光の強さで分子集合を巧みに制御!様々な形を持つ非平衡超分子集合体の作り分けを実現

第691回のスポットライトリサーチは、千葉大学大学院 融合理工学府 分子集合体化学研究室(矢貝研究室…

化学系研究職の転職は難しいのか?求人動向と転職を成功させる考え方

化学系研究職の転職の難点は「専門性のニッチさ」と考えられることが多いですが、企業が求めるのは研究プロ…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP