[スポンサーリンク]

化学者のつぶやき

ブロック共重合体で無機ナノ構造を組み立てる

[スポンサーリンク]

有機材料・無機材料いずれの領域でも、「ナノスケール構造の精密制御された素材創出法」は重要研究課題とされています。

とりわけ近年では、次世代エネルギー技術(色素増感太陽電池、バッテリー、燃料電池etc)がその有望な応用先とされています。これら技術に内在する諸問題(エネルギー効率向上など)を解決しうる、共通かつ有効な手立てと考えられているためです。

今回はブロックコポリマーを用いた構造制御法の一つ「CASH法」をご紹介します[1]。

ブロックコポリマーとは、各モノマーが各々長く連続する複数の領域を持つポリマーのことです。2領域から構成される場合はジブロック体、3領域ならトリブロック体・・・と呼ばれます。

各領域がそれぞれ相反する親水性・疎水性を持つ両親媒性である場合には、ポリマー鎖がモノマー構造・構成比などに応じた特定の形状に自己組織化することが知られています。

この組織化構造を支持体として、無機材料orハイブリッド材料のナノ構造を簡便に構築する方法がCASH法(combined assembly by soft and hard chemistry method)と呼ばれるものです。

両親媒性ジブロック共重合体の親水性部分は、特に金属原料と親和性が高いため、比率を適切に変えて混合することで、無機材料を様々な形状に自己組織化出来ます。これはすなわち、デバイスに応じた最適ナノ構造を簡便に作れると言うことです。

CASH_1

さらにこの自己組織化体を熱処理することで、ポリマー部分をグラファイトへと変換します。こうすることで構造崩壊を防ぎ、無機材料の結晶性を高めることも出来ます。酸素雰囲気で熱処理を行えば、支持体としてのポリマーを除去することも容易です。

CASH_2

具体的応用の詳細については総説[1]をご覧頂きたいですが、従来の構造制御法と異なり、ナノ構造の表面積を高められる、構造体の方向制御が3次元的にできる、支持ブロックポリマーが備える機能も付与可能、非酸化物金属でもナノ構造を維持出来 などの特徴があるようです。

CASH_3

安定化配位子を組み込み、金属Ptナノ粒子をメソポーラス型に自己組織化させた例[2]

現状はジブロック共重合体を用いる展開が主のようですが、今後はトリブロック体を使ったより複雑かつ精密な構造制御、ナノスケールよりもさらに大きなマクロスケールでの構造制御を組み合わせることを目標としているようです。

トップダウン法では不可能な構造制御が行えるため、エネルギー伝達ロスの低減目的などには向きそうな手法だと思えます。また弱い結合に依拠する自己組織化体は得てして構造不安定さに悩まされるのですが、これを熱処理によって固めてしまうことで、材料応用に必要な強度を捻出して応用範囲を広げる発想も興味深いと思えます。

ブロックポリマー自体は古典的技術ですが、これをナノスケールでの基礎研究・ハイブリッド材料へと上手く展開させ、新しい応用を切り開いている好例と言えるでしょう。今後の発展が期待されます。

(画像は総説[1]およびWiesner Groupホームページから引用しました)

 

関連文献

[1]”Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells” Orilall, M. C.; Wiesner, U. Chem. Soc. Rev. 2011, 40, 520. DOI: 10.1039/C0CS00034E
[2] “Ordered Mesoporous Materials from Metal Nanoparticle-Block Copolymer Self-Assembly” Wiesner, U. et al. Science 2008, 320, 1748. DOI: 10.1126/science.1159950

 

関連書籍

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. スイスに留学するならこの奨学金 -Swiss Governmen…
  2. タキサン類の全合成
  3. 製品開発職を検討する上でおさえたい3つのポイント
  4. 無保護アミン類の直接的合成
  5. 孫悟飯のお仕事は?
  6. あなたの合成ルートは理想的?
  7. Skype英会話の勧め
  8. 既存の農薬で乾燥耐性のある植物を育てる

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 英グラクソスミスクライン、抗ウイルス薬を大幅値引きへ
  2. 有機合成化学協会誌6月号:ポリフィリン・ブチルアニリド・ヘテロ環合成・モノアシル酒石酸触媒・不斉ヒドロアリール化・機能性ポリペプチド
  3. 微生物細胞に優しいバイオマス溶媒 –カルボン酸系双性イオン液体の開発–
  4. START your chemi-story あなたの化学を探す 研究職限定 キャリアマッチングLIVE
  5. 共有結合で標的タンパク質を高選択的に機能阻害する新しいドラッグデザイン
  6. 異分野交流のすゝめ
  7. MIT、空気中から低濃度の二酸化炭素を除去できる新手法を開発
  8. 95%以上が水の素材:アクアマテリアル
  9. 金属錯体化学を使って神経伝達物質受容体を選択的に活性化する
  10. 田辺製薬と三菱ウェルファーマが10月1日に合併へ‐新社名は「田辺三菱製薬」

関連商品

注目情報

注目情報

最新記事

使っては・合成してはイケナイ化合物 |第3回「有機合成実験テクニック」(リケラボコラボレーション)

理系の理想の働き方を考える研究所「リケラボ」とコラボレーションとして「有機合成実験テクニック」の特集…

有機合成化学協会誌2020年1月号:ドルテグラビルナトリウム・次亜塩素酸ナトリウム5水和物・面性不斉含窒素複素環カルベン配位子・光酸発生分子・海産天然物ageladine A

有機合成化学協会が発行する有機合成化学協会誌、2020年1月号がオンライン公開されました。オ…

【日産化学】新卒採用情報(2021卒)

―ぶれずに価値創造。私たちは、生み出し続ける新たな価値で、ライフサイエンス・情報通信・環境エ…

Carl Boschの人生 その5

Tshozoです。だいぶ間が空いてしまいましたが訳すべき文章量が多すぎて泣きそうになっていたためです…

Zoomオンライン革命!

概要“実際に会う"という仕事スタイルが、実はボトルネックになっていませんか?オンライン会…

金属イオン認識と配位子交換の順序を切替えるホスト分子

第243回のスポットライトリサーチは、金沢大学 理工研究域物質化学系(秋根研究室)・酒田陽子 准教授…

Chem-Station Twitter

PAGE TOP