[スポンサーリンク]

化学者のつぶやき

ブロック共重合体で無機ナノ構造を組み立てる

[スポンサーリンク]

有機材料・無機材料いずれの領域でも、「ナノスケール構造の精密制御された素材創出法」は重要研究課題とされています。

とりわけ近年では、次世代エネルギー技術(色素増感太陽電池、バッテリー、燃料電池etc)がその有望な応用先とされています。これら技術に内在する諸問題(エネルギー効率向上など)を解決しうる、共通かつ有効な手立てと考えられているためです。

今回はブロックコポリマーを用いた構造制御法の一つ「CASH法」をご紹介します[1]。

ブロックコポリマーとは、各モノマーが各々長く連続する複数の領域を持つポリマーのことです。2領域から構成される場合はジブロック体、3領域ならトリブロック体・・・と呼ばれます。

各領域がそれぞれ相反する親水性・疎水性を持つ両親媒性である場合には、ポリマー鎖がモノマー構造・構成比などに応じた特定の形状に自己組織化することが知られています。

この組織化構造を支持体として、無機材料orハイブリッド材料のナノ構造を簡便に構築する方法がCASH法(combined assembly by soft and hard chemistry method)と呼ばれるものです。

両親媒性ジブロック共重合体の親水性部分は、特に金属原料と親和性が高いため、比率を適切に変えて混合することで、無機材料を様々な形状に自己組織化出来ます。これはすなわち、デバイスに応じた最適ナノ構造を簡便に作れると言うことです。

CASH_1

さらにこの自己組織化体を熱処理することで、ポリマー部分をグラファイトへと変換します。こうすることで構造崩壊を防ぎ、無機材料の結晶性を高めることも出来ます。酸素雰囲気で熱処理を行えば、支持体としてのポリマーを除去することも容易です。

CASH_2

具体的応用の詳細については総説[1]をご覧頂きたいですが、従来の構造制御法と異なり、ナノ構造の表面積を高められる、構造体の方向制御が3次元的にできる、支持ブロックポリマーが備える機能も付与可能、非酸化物金属でもナノ構造を維持出来 などの特徴があるようです。

CASH_3

安定化配位子を組み込み、金属Ptナノ粒子をメソポーラス型に自己組織化させた例[2]

現状はジブロック共重合体を用いる展開が主のようですが、今後はトリブロック体を使ったより複雑かつ精密な構造制御、ナノスケールよりもさらに大きなマクロスケールでの構造制御を組み合わせることを目標としているようです。

トップダウン法では不可能な構造制御が行えるため、エネルギー伝達ロスの低減目的などには向きそうな手法だと思えます。また弱い結合に依拠する自己組織化体は得てして構造不安定さに悩まされるのですが、これを熱処理によって固めてしまうことで、材料応用に必要な強度を捻出して応用範囲を広げる発想も興味深いと思えます。

ブロックポリマー自体は古典的技術ですが、これをナノスケールでの基礎研究・ハイブリッド材料へと上手く展開させ、新しい応用を切り開いている好例と言えるでしょう。今後の発展が期待されます。

(画像は総説[1]およびWiesner Groupホームページから引用しました)

 

関連文献

[1]”Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells” Orilall, M. C.; Wiesner, U. Chem. Soc. Rev. 2011, 40, 520. DOI: 10.1039/C0CS00034E
[2] “Ordered Mesoporous Materials from Metal Nanoparticle-Block Copolymer Self-Assembly” Wiesner, U. et al. Science 2008, 320, 1748. DOI: 10.1126/science.1159950

 

関連書籍

関連リンク

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. リニューアル?!
  2. 2010年日本化学会年会を楽しむ10の方法
  3. ニッケル-可視光レドックス協働触媒系によるC(sp3)-Hチオカ…
  4. 第37回反応と合成の進歩シンポジウムに参加してきました。
  5. ゲルマニウムビニリデン
  6. アイルランドに行ってきた①
  7. フラーレン:発見から30年
  8. アルコールをアルキル化剤に!ヘテロ芳香環のC-Hアルキル化

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ケムステ版・ノーベル化学賞候補者リスト【2018年版】
  2. 危険!DDT入りの蚊取り線香
  3. SchultzとKay: 米スクリプス研究所のトップへ
  4. 均一系水素化 Homogeneous Hydrogenaton
  5. 生体深部イメージングに有効な近赤外発光分子の開発
  6. 異分野交流のすゝめ
  7. ジルコノセン触媒による第一級アミドとアミンのトランスアミド化反応
  8. サクラの酵母で作った赤い日本酒を商品化に成功
  9. Junfeng Zhao
  10. Branch選択的不斉アリル位C(Sp3)–Hアルキル化反応

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

化学系必見!お土産・グッズ・アイテム特集

bergです。今回は化学系や材料系の学生さんや研究者の方々がつい手に取りたくなりそうなグッズなどを筆…

危険物取扱者:記事まとめ

世の中には様々な化学系の資格があり、化学系企業で働いていると資格を取る必要に迫られる機会があります。…

化学者のためのエレクトロニクス入門③ ~半導体業界で活躍する化学メーカー編~

bergです。化学者のためのエレクトロニクス入門のシリーズも3回目を迎えました。前回は電子回路を大き…

第101回―「高分子ナノ構造の精密合成」Rachel O’Reilly教授

第101回の海外化学者インタビューは、レイチェル・オライリー教授です。ケンブリッジ大学化学科に所属(…

大学院生になっても宿題に追われるってどないなんだが?【アメリカでPh.D.を取る–コースワークの巻–】

アメリカでの PhD 課程の1年目には、多くの大学院の場合, 研究だけでなく、講義の受講やTAの義務…

島津製作所 創業記念資料館

島津製作所の創業から現在に至るまでの歴史を示す資料館で、数々の発明品が展示されている。第10回化学遺…

研究テーマ変更奮闘記 – PhD留学(後編)

前回の記事では、私がPhD留学を始めた際のテーマ決めの流れや、その後テーマ変更を考え始めてからの教授…

ジョン・ケンドリュー John C. Kendrew

ジョン・コウデリー・ケンドリュー(John Cowdery Kendrew、1917年3月24日-1…

Chem-Station Twitter

PAGE TOP