[スポンサーリンク]

化学者のつぶやき

ブロック共重合体で無機ナノ構造を組み立てる

[スポンサーリンク]

有機材料・無機材料いずれの領域でも、「ナノスケール構造の精密制御された素材創出法」は重要研究課題とされています。

とりわけ近年では、次世代エネルギー技術(色素増感太陽電池、バッテリー、燃料電池etc)がその有望な応用先とされています。これら技術に内在する諸問題(エネルギー効率向上など)を解決しうる、共通かつ有効な手立てと考えられているためです。

今回はブロックコポリマーを用いた構造制御法の一つ「CASH法」をご紹介します[1]。

ブロックコポリマーとは、各モノマーが各々長く連続する複数の領域を持つポリマーのことです。2領域から構成される場合はジブロック体、3領域ならトリブロック体・・・と呼ばれます。

各領域がそれぞれ相反する親水性・疎水性を持つ両親媒性である場合には、ポリマー鎖がモノマー構造・構成比などに応じた特定の形状に自己組織化することが知られています。

この組織化構造を支持体として、無機材料orハイブリッド材料のナノ構造を簡便に構築する方法がCASH法(combined assembly by soft and hard chemistry method)と呼ばれるものです。

両親媒性ジブロック共重合体の親水性部分は、特に金属原料と親和性が高いため、比率を適切に変えて混合することで、無機材料を様々な形状に自己組織化出来ます。これはすなわち、デバイスに応じた最適ナノ構造を簡便に作れると言うことです。

CASH_1

さらにこの自己組織化体を熱処理することで、ポリマー部分をグラファイトへと変換します。こうすることで構造崩壊を防ぎ、無機材料の結晶性を高めることも出来ます。酸素雰囲気で熱処理を行えば、支持体としてのポリマーを除去することも容易です。

CASH_2

具体的応用の詳細については総説[1]をご覧頂きたいですが、従来の構造制御法と異なり、ナノ構造の表面積を高められる、構造体の方向制御が3次元的にできる、支持ブロックポリマーが備える機能も付与可能、非酸化物金属でもナノ構造を維持出来 などの特徴があるようです。

CASH_3

安定化配位子を組み込み、金属Ptナノ粒子をメソポーラス型に自己組織化させた例[2]

現状はジブロック共重合体を用いる展開が主のようですが、今後はトリブロック体を使ったより複雑かつ精密な構造制御、ナノスケールよりもさらに大きなマクロスケールでの構造制御を組み合わせることを目標としているようです。

トップダウン法では不可能な構造制御が行えるため、エネルギー伝達ロスの低減目的などには向きそうな手法だと思えます。また弱い結合に依拠する自己組織化体は得てして構造不安定さに悩まされるのですが、これを熱処理によって固めてしまうことで、材料応用に必要な強度を捻出して応用範囲を広げる発想も興味深いと思えます。

ブロックポリマー自体は古典的技術ですが、これをナノスケールでの基礎研究・ハイブリッド材料へと上手く展開させ、新しい応用を切り開いている好例と言えるでしょう。今後の発展が期待されます。

(画像は総説[1]およびWiesner Groupホームページから引用しました)

 

関連文献

[1]”Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells” Orilall, M. C.; Wiesner, U. Chem. Soc. Rev. 2011, 40, 520. DOI: 10.1039/C0CS00034E
[2] “Ordered Mesoporous Materials from Metal Nanoparticle-Block Copolymer Self-Assembly” Wiesner, U. et al. Science 2008, 320, 1748. DOI: 10.1126/science.1159950

 

関連書籍

関連リンク

The following two tabs change content below.
cosine

cosine

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。 関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。 素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 2009年10大分子発表!
  2. グラフィカルアブストラクト付・化学系ジャーナルRSSフィード
  3. 研究室でDIY!~割れないマニホールドをつくろう~
  4. 有機アジド(2):爆発性
  5. アリルC(Sp3)-H結合の直接的ヘテロアリール化
  6. 2015年ケムステ人気記事ランキング
  7. ケムステ版・ノーベル化学賞候補者リスト【2018年版】
  8. 視覚を制御する物質からヒントを得た異性化反応

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ピニック(クラウス)酸化 Pinnick(Kraus) Oxidation
  2. マイクロプラスチックの諸問題
  3. 決め手はケイ素!身体の中を透視する「分子の千里眼」登場
  4. 環境、人体に優しい高分子合成を開発 静大と製薬会社が開発
  5. エミリー・バルスカス Emily P. Balskus
  6. 光照射によって結晶と液体を行き来する蓄熱分子
  7. 過ぎ去りし器具への鎮魂歌
  8. プロドラッグの話
  9. 可逆的付加-開裂連鎖移動重合 RAFT Polymerization
  10. 海外学会出張でeSIMを使ってみました

関連商品

注目情報

注目情報

最新記事

ヒドロゲルの新たな力学強度・温度応答性制御法

第230回のスポットライトリサーチは、東京農工大学大学院工学府(村岡研究室)・石田敦也さんにお願い致…

光誘導アシルラジカルのミニスキ型ヒドロキシアルキル化反応

可視光照射条件下でのアジン類のミニスキ型ヒドロキシアルキル化反応が開発された。官能基許容性が高いため…

イオン交換が分子間電荷移動を駆動する協奏的現象の発見

第229回のスポットライトリサーチは、東京大学大学院 新領域創成科学研究科(竹谷・岡本研究室)・山下…

化学産業における規格の意義

普段、実験で使う溶媒には、試薬特級や試薬一級といった”グレード”が記載されている。一般的には、特級の…

特許資産規模ランキング2019、トップ3は富士フイルム、三菱ケミカル、住友化学

株式会社パテント・リザルトは、独自に分類した「化学」業界の企業を対象に、各社が保有する特許資産を質と…

TQ: TriQuinoline

第228回のスポットライトリサーチは、足立 慎弥さんにお願い致しました。シンプルながらこれま…

Chem-Station Twitter

PAGE TOP