[スポンサーリンク]

スポットライトリサーチ

岩塩と蛍石ユニットを有する層状ビスマス酸塩化物の構造解析とトポケミカルフッ化反応によるその光触媒活性の向上

[スポンサーリンク]

第412回のスポットライトリサーチは、京都大学大学院 工学研究科物質エネルギー化学専攻 陰山研究室の加藤 大地 (かとう だいち)助教にお願いしました。

陰山研究室では、遷移金属酸化物をベースとした新物質開発を行っており、低温還元法による新たな配位状態を持つ鉄酸化物の合成や複合アニオン化合物の創製と機能開拓などのテーマに取り組んでいます。本プレスリリースの研究成果は、Bi12O17Cl2 というビスマス酸塩化物についてで、この化合物は環境浄化や人工光合成など様々な用途に対して高い光触媒活性を示すことからここ数年で活発な研究がなされています。しかしながら結晶構造が未解明であるため触媒の活性向上が阻まれていました。そこで本研究では、電子顕微鏡、X 線および中性子回折、単結晶 X 線回折など様々な解析手法を組み合わせることで結晶構造を明らかにしました。そして得られたた結晶構造の知見を元に、低温でBi12O17Cl2にフッ素挿入反応を行い、より光触媒活性が高いBi12O17-0.5xFxCl2 (4 ≤ x ≤ 6)の合成に成功しました。

この研究成果は、「Advanced Functional Materials」誌およびプレスリリースに公開されています。

Bi12O17Cl2 with a Sextuple Bi-O Layer Composed of Rock-Salt and Fluorite Units and its Structural Conversion through Fluorination to Enhance Photocatalytic Activity

Daichi Kato, Osamu Tomita, Ryky Nelson, Maria A. Kirsanova, Richard Dronskowski, Hajime Suzuki, Chengchao Zhong, Cédric Tassel, Kohdai Ishida, Yosuke Matsuzaki, Craig M. Brown, Koji Fujita, Kotaro Fujii, Masatomo Yashima, Yoji Kobayashi, Akinori Saeki, Itaru Oikawa, Hitoshi Takamura, Ryu Abe, Hiroshi Kageyama, Tatiana E. Gorelik, Artem M. Abakumov

DOI: doi.org/10.1002/adfm.202204112

Q1. 今回プレスリリースとなったのはどんな研究ですか?簡単にご説明ください。

本研究では、光触媒として知られていた酸塩化物Bi12O17Cl2の構造解析を行い、蛍石型構造に似た構造を持つ蛍石層の中に(図の水色の部分)、部分的に岩塩型構造に似た構造を持つ岩塩ユニット(図のオレンジの部分)が内包されることで、波打った構造を有することを見出しました。加えて、フッ素を挿入する反応を行い、岩塩ユニットと蛍石ユニットの複合パターンを変化させ、構造を平坦化させることで光触媒活性を大幅に向上させることに成功しました。

NaCl(塩化ナトリウム)に代表される岩塩型構造とCaF2(フッ化カルシウム)に代表される蛍石型構造は、無機固体において最も基本的な構造です。また、岩塩構造の層(岩塩層)をもつ化合物や蛍石型構造の層(蛍石層)をもつ化合物も数多く知られています。しかし、今回の我々が発見したBi12O17Cl2のように、2つの基本構造が1つの層内に共存し、しかもその配列パターンを化学反応により制御した例はこれまでありません。本成果は、無機固体の新しい構造の構築と制御法を示したものであり、今後、この2つの基本構造を自在に組み合わせることが可能になれば、新しい機能性材料の開発につながることが期待できます。

Q2. 本研究テーマについて、自分なりに工夫したところ、思い入れがあるところを教えてください。

Bi12O17Cl2の結晶構造をもとに、フッ素挿入反応を行った点です。Bi12O17Cl2の構造中には、層の波打ちが存在します。光触媒の観点からは、電子がスムーズに移動した方がいいのですが、構造の波打ちは電子の移動を妨げることになるので好ましくないであろうと考えました。そこで、結晶構造をマジマジと眺めて、構造中の陰イオンの数を変えれば層の波打ちが変化すると予想しました。当初はBi3+に価数の違うカチオンの置換を試みましたが、思うようにいきませんでした。最終的に、陽イオンの置換ではなく、別の陰イオン(フッ素)の挿入に思い至り、狙い通り層の平坦化に成功し、実際に電子の移動度が向上しました。

フッ素化反応前後での Bi–O(–F)層の構造変化の模式図。(出典:JSTプレスリリース)

(a) 酢酸分解に対する光触媒活性、Bi12O17-0.5xFxCl2のフッ素量 x が増えるに従って、光触媒活性が大幅に向上。(b)フッ素化前後の光伝導度。(出典:JSTプレスリリース)

Q3. 研究テーマの難しかったところはどこですか?またそれをどのように乗り越えましたか?

今回扱った物質は、非常に大きな格子をもった複雑な構造を有しているので、構造解析には苦労しました。フッ素化後の構造では、合成当初は岩塩構造のユニットが完全に消失していると思い込んでいたので、最初に組み立てた構造モデルで全くX線回折パターンがフィットせず悩みました。中性子回折測定も併用し、複数の構造モデルを試していくうちに、蛍石ユニットと岩塩ユニットのユニットが積層方向に交互に現れる構造に再配列が起こっているという結論に辿り着きました。

(a) Bi12O17Cl2の電子顕微鏡像。 (b) 本研究で明らかとなったBi12O17Cl2の結晶構造。(c) c 軸方向から見た BiO2.25ブロック。(出典:JSTプレスリリース)

Q4. 将来は化学とどう関わっていきたいですか?

これからも誰かの目を引くような面白い新物質を作っていきたいと思います。

有機化学や錯体化学では、官能基や配位子を自在に入れ替えて、物質を設計しているイメージがありますが、固体化学では一つの陰イオン(配位子や官能基に相当)を交換することさえ中々難しいです。これは一般的な固体の合成が、高温焼成(~1000˚C)によって行うので、一番安定な原子の配列に勝手に落ち着いてしまうためです。狙った構造や組成を一つ得るのすらチャレンジングですが、逆に達成できたときの喜びも格別に感じます。

最近では理論による物質探索も取り入れて、合理的な物質設計を目指して頑張っています。いつか、思い通りに新物質が設計できる日を目指して研究を続けて行きたいです。

Q5. 最後に、読者の皆さんにメッセージをお願いします。

本研究は数多くの共同研究者の方々の協力によって始めて実を結んだものです。共著者の数は22名と、個人的に最多の論文となりました。国籍や分野の違う方々との議論するのは非常に楽しいと思う反面、考えをまとめて整理するのが難しかったです。ただ、その甲斐もあって面白い研究になったと思っています。指導してくださった陰山洋教授をはじめ、一緒に研究に携わって頂いた方々にこの場を借りて感謝申し上げたいと思います。

また、このような貴重な機会を与えてくださったChem-Stationスタッフの方々にも深く感謝申し上げます。

研究者の略歴

名前:加藤 大地 (かとう だいち)

所属:京都大学大学院 工学研究科 物質エネルギー化学専攻 陰山研究室

テーマ: 新規複合アニオン化合物の合成

略歴:

平成24年3月31日       東大寺学園高等学校卒業

平成24年4月1日        京都大学工学部工業化学科入学

平成28年3月24日       同上卒業

平成28年4月1日        京都大学大学院工学研究科物質エネルギー化学専攻 修士課程入学

平成30年3月23日       同上修了

平成30年4月1日       京都大学大学院工学研究科物質エネルギー化学専攻 博士後期課程進学

平成30年4月 日本学術振興会特別研究員(DC1)(京都大学工学研究科)

令和2年11月24日  京都大学大学院工学研究科物質エネルギー化学専攻 博士後期課程修了

令和2年12月–現在       京都大学工学研究科物質エネルギー化学化学専攻 助教

関連リンク

Avatar photo

Zeolinite

投稿者の記事一覧

ただの会社員です。某企業で化学製品の商品開発に携わっています。社内でのデータサイエンスの普及とDX促進が個人的な野望です。

関連記事

  1. 温和な室温条件で高反応性活性種・オルトキノジメタンを生成
  2. ハリーポッターが参考文献に登場する化学論文
  3. この窒素、まるでホウ素~ルイス酸性窒素化合物~
  4. 学生実験・いまむかし
  5. 細胞懸濁液をのせて、温めるだけで簡単に巨大ながんスフェロイドがで…
  6. Pure science
  7. 有機合成化学協会誌2019年5月号:特集号 ラジカル種の利用最前…
  8. なぜあの研究室の成果は一流誌ばかりに掲載されるのか【考察】

注目情報

ピックアップ記事

  1. カルコゲン結合でロジウム二核錯体の構造を制御する!
  2. 不安定炭化水素化合物[5]ラジアレンの合成と性質
  3. 第38回「分子組織化の多様な側面を理解する」Neil Champness教授
  4. 『分子標的』に期待
  5. トリス(2,4-ペンタンジオナト)鉄(III) : Tris(2,4-pentanedionato)iron(III)
  6. 三井化学、触媒科学賞の受賞者を決定
  7. 東京大学理学部 化学教室
  8. 反芳香族化合物を積層させ三次元的な芳香族性を発現
  9. 大日本製薬と住友製薬が来年10月合併・国内6位に
  10. 細胞が分子の3Dプリンターに?! -空気に触れるとファイバーとなるタンパク質を細胞内で合成-

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2022年8月
1234567
891011121314
15161718192021
22232425262728
293031  

注目情報

最新記事

【JAICI Science Dictionary Pro (JSD Pro)】CAS SciFinder®と一緒に活用したいサイエンス辞書サービス

ケムステ読者の皆様には、CAS が提供する科学情報検索ツール CAS SciFind…

有機合成化学協会誌2025年5月号:特集号 有機合成化学の力量を活かした構造有機化学のフロンティア

有機合成化学協会が発行する有機合成化学協会誌、2025年5月号がオンラインで公開されています!…

ジョセップ・コルネラ Josep Cornella

ジョセップ・コルネラ(Josep Cornella、1985年2月2日–)はスペイン出身の有機・無機…

電気化学と数理モデルを活用して、複雑な酵素反応の解析に成功

第658回のスポットライトリサーチは、京都大学大学院 農学研究科(生体機能化学研究室)修士2年の市川…

ティム ニューハウス Timothy R. Newhouse

ティモシー・ニューハウス(Timothy R. Newhouse、19xx年xx月x日–)はアメリカ…

熊谷 直哉 Naoya Kumagai

熊谷 直哉 (くまがいなおや、1978年1月11日–)は日本の有機化学者である。慶應義塾大学教授…

マシンラーニングを用いて光スイッチング分子をデザイン!

第657 回のスポットライトリサーチは、北海道大学 化学反応創成研究拠点 (IC…

分子分光学の基礎

こんにちは、Spectol21です!分子分光学研究室出身の筆者としては今回の本を見逃…

ファンデルワールス力で分子を接着して三次元の構造体を組み上げる

第 656 回のスポットライトリサーチは、京都大学 物質-細胞統合システム拠点 (iCeMS) 古川…

第54回複素環化学討論会 @ 東京大学

開催概要第54回複素環化学討論会日時:2025年10月9日(木)~10月11日(土)会場…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP