[スポンサーリンク]

一般的な話題

MFCA -環境調和の指標、負のコストの見える化-

[スポンサーリンク]

 

過去記事で紹介されていますが、合成経路の理想度の評価手法が提案されています。合成経路を評価するにも様々な観点-収率・反応の新規性・誘導体化の可能性などといったファクターがあると思います。また工業プロセスでは、法規制・安全性・コスト・原料の調達安定性など優先されるファクターが変わってきます。今回、工業プロセスの評価手法として、経済産業省により提案されているMFCA (Material Flow Cost Accounting)という手法を紹介します。

合成経路に限りませんが、論文や特許のイントロでは、既知の技術の問題点を挙げ、報告する仕事の新規性・有用性をアピールします。ところが実際にはその問題は解決しているけれども、別な問題が生じている場合も散見されます。(例えば、原料コストが~という問題提起に対して、新規触媒と特別なadditiveでトータルコストは上がっているとか、反応速度が遅いという問題に対して、試薬の反応性は高いが安全性に問題が生じるなど) 筆者も業務で特許の拒絶対応に関わることがありますが、審査官の指摘に対して、通すために強引な利点の強調を行うことは多々あります。

反応の有用性評価が困難な理由として、着目点が主観であること、複合的な要素に対して定量化ができないことに原因があると思われます。 MFCAはコスト・環境負荷という観点から、製造プロセスのコスト構造の定量化・見える化を行い、何がボトルネックか?を明確にします。

従来の原価計算が、製品を製造にかかるコスト=原単位に着目しているのに対して、MFCAはコストに現れなかった廃棄物を負のコストととらえます。プロセスでは、マテリアルバランス・ヒートバランスをとりますがMFCAはマテリアルバランスにコストにを割り振ったイメージ、またはアトムエコノミーの概念にコストを導入したイメージでしょうか。

こちらのHPに導入事例が紹介されています。しかし、これらの例示を見ても、従来のコスト削減やプロセス改善との違いが明確ではありません。そこで、簡単な有機反応にMFCAを適用してみました。原料コストは試薬カタログから抜粋して、g単価に直しているので、高めになっています。1molの反応を考え、単純に考えるために、当量用い、反応に用いる溶媒・ユーティリティ、処理・回収にかかるコストなどは除いています。原料コストを算出し、分子量に基づいて生成物のコストを計算すると表の様になります。

 

MFCA scheme.gif
MFCA-table1.PNG

単純なアルキル化(マロン酸エステル合成):負のコストが非常に高く、ヨウ素の分子量が影響しているのがわかります。収率80%と100%で試算しましたが、80→100と反応条件を改善することは(精製や溶媒コストを考慮しない場合)改善効果は小さく、ボトルネックとしてMeIを避けることが効果的ということが見られます。

 

MFCA table-2.PNG

鈴木-宮浦カップリング:Pdは2mol%としました。パラジウムが全体コスト半分を占め、負のコストの7割を占めてていることが見えてきます。もし触媒量を半減させられれば、負のコストは60%強におちることも見えてきます。この系では、アリルハライドをClやメシレートに変えようと(触媒も変えなくてはいけませんが)効果は少ないこともわかります。

単純にしていますが、MFCAを使って見るとボトルネックの工程が見えてくるだけでなく、質の良いプロセスや、合成に関して優れていると言われる手法とも相関がとれそうです。例えば、付加反応は置換反応よりも優れる、コンバージェント合成の利点、保護脱保護を避ける、回収触媒など、いずれも負のコストを小さくしていると言えます。MFCAの負のコストが小さいプロセスは、グリーンケミストリーで用いられるEファクターの小さいプロセス相関もとれそうです。

溶媒や反応時間、処理コストを無視して簡単な反応を例示しましたが、MFCAの最大の効力は、ボトルネックを見える化することです。ボトルネックはどこかという側面で反応を眺めてみると、新しい発見があるかもしれません。MFCAは経済産業省が国際標準採用に向け活動中ということですので、概念を把握しておくだけでも役立つかもしれません。

 

関連書籍

[amazonjs asin=”4532319226″ locale=”JP” title=”ムダを利益に料理する マテリアル フロー コスト経営”]

lcd-aniso

投稿者の記事一覧

企業にてディスプレイ関連材料の開発をしております。学生時代はヘテロ原子化学を専攻していました。私のできる範囲で皆様に興味を持っていただける 話題を提供できればと思います。

関連記事

  1. 私がケムステスタッフになったワケ(2)
  2. 転職でチャンスを掴める人、掴めない人の違い
  3. ケムステイブニングミキサー2017ー報告
  4. 第96回日本化学会付設展示会ケムステキャンペーン!Part II…
  5. 水素結合の発見者は誰?
  6. 化学のあるある誤変換
  7. 特許情報から読み解く大手化学メーカーの比較
  8. 【11月開催】第十三回 マツモトファインケミカル技術セミナー  …

注目情報

ピックアップ記事

  1. 結晶データの登録・検索サービス(Access Structures&Deposit Structures)が公開
  2. アート オブ プロセスケミストリー : メルク社プロセス研究所での実例
  3. 研究テーマ変更奮闘記 – PhD留学(後編)
  4. アメリカの大学院で受ける授業
  5. メカノケミストリーを用いた固体クロスカップリング反応
  6. 2018年3月2日:ケムステ主催「化学系学生対象 企業合同説明会」
  7. ノーベル化学賞への道公開
  8. マテリアルズ・インフォマティクスの導入・活用・推進におけるよくある失敗とその対策とは?
  9. アルキンメタセシスで誕生!HPB to γ-グラフィン!
  10. Late-Stage C(sp3)-H活性化法でステープルペプチドを作る

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年8月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP