[スポンサーリンク]

一般的な話題

MFCA -環境調和の指標、負のコストの見える化-

[スポンサーリンク]

 

過去記事で紹介されていますが、合成経路の理想度の評価手法が提案されています。合成経路を評価するにも様々な観点-収率・反応の新規性・誘導体化の可能性などといったファクターがあると思います。また工業プロセスでは、法規制・安全性・コスト・原料の調達安定性など優先されるファクターが変わってきます。今回、工業プロセスの評価手法として、経済産業省により提案されているMFCA (Material Flow Cost Accounting)という手法を紹介します。

合成経路に限りませんが、論文や特許のイントロでは、既知の技術の問題点を挙げ、報告する仕事の新規性・有用性をアピールします。ところが実際にはその問題は解決しているけれども、別な問題が生じている場合も散見されます。(例えば、原料コストが~という問題提起に対して、新規触媒と特別なadditiveでトータルコストは上がっているとか、反応速度が遅いという問題に対して、試薬の反応性は高いが安全性に問題が生じるなど) 筆者も業務で特許の拒絶対応に関わることがありますが、審査官の指摘に対して、通すために強引な利点の強調を行うことは多々あります。

反応の有用性評価が困難な理由として、着目点が主観であること、複合的な要素に対して定量化ができないことに原因があると思われます。 MFCAはコスト・環境負荷という観点から、製造プロセスのコスト構造の定量化・見える化を行い、何がボトルネックか?を明確にします。

従来の原価計算が、製品を製造にかかるコスト=原単位に着目しているのに対して、MFCAはコストに現れなかった廃棄物を負のコストととらえます。プロセスでは、マテリアルバランス・ヒートバランスをとりますがMFCAはマテリアルバランスにコストにを割り振ったイメージ、またはアトムエコノミーの概念にコストを導入したイメージでしょうか。

こちらのHPに導入事例が紹介されています。しかし、これらの例示を見ても、従来のコスト削減やプロセス改善との違いが明確ではありません。そこで、簡単な有機反応にMFCAを適用してみました。原料コストは試薬カタログから抜粋して、g単価に直しているので、高めになっています。1molの反応を考え、単純に考えるために、当量用い、反応に用いる溶媒・ユーティリティ、処理・回収にかかるコストなどは除いています。原料コストを算出し、分子量に基づいて生成物のコストを計算すると表の様になります。

 

MFCA scheme.gif
MFCA-table1.PNG

単純なアルキル化(マロン酸エステル合成):負のコストが非常に高く、ヨウ素の分子量が影響しているのがわかります。収率80%と100%で試算しましたが、80→100と反応条件を改善することは(精製や溶媒コストを考慮しない場合)改善効果は小さく、ボトルネックとしてMeIを避けることが効果的ということが見られます。

 

MFCA table-2.PNG

鈴木-宮浦カップリング:Pdは2mol%としました。パラジウムが全体コスト半分を占め、負のコストの7割を占めてていることが見えてきます。もし触媒量を半減させられれば、負のコストは60%強におちることも見えてきます。この系では、アリルハライドをClやメシレートに変えようと(触媒も変えなくてはいけませんが)効果は少ないこともわかります。

単純にしていますが、MFCAを使って見るとボトルネックの工程が見えてくるだけでなく、質の良いプロセスや、合成に関して優れていると言われる手法とも相関がとれそうです。例えば、付加反応は置換反応よりも優れる、コンバージェント合成の利点、保護脱保護を避ける、回収触媒など、いずれも負のコストを小さくしていると言えます。MFCAの負のコストが小さいプロセスは、グリーンケミストリーで用いられるEファクターの小さいプロセス相関もとれそうです。

溶媒や反応時間、処理コストを無視して簡単な反応を例示しましたが、MFCAの最大の効力は、ボトルネックを見える化することです。ボトルネックはどこかという側面で反応を眺めてみると、新しい発見があるかもしれません。MFCAは経済産業省が国際標準採用に向け活動中ということですので、概念を把握しておくだけでも役立つかもしれません。

 

関連書籍

lcd-aniso

投稿者の記事一覧

企業にてディスプレイ関連材料の開発をしております。学生時代はヘテロ原子化学を専攻していました。私のできる範囲で皆様に興味を持っていただける 話題を提供できればと思います。

関連記事

  1. 英国王立化学会(RSC)が人材募集中
  2. 芳香族フッ素化合物の新規汎用合成法
  3. ワインのコルク臭の原因は?
  4. 岸義人先生来学
  5. 「ソーシャルメディアを活用したスタートアップの価値向上」 Blo…
  6. 巧みに設計されたホウ素化合物と可視光からアルキルラジカルを発生さ…
  7. 【9月開催】第十一回 マツモトファインケミカル技術セミナー   …
  8. ノーベル週間にスウェーデンへ!若手セミナー「SIYSS」に行こう…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 松原 亮介 Ryosuke Matsubara
  2. ケムステイブニングミキサー2018ー報告
  3. ヴィンス・ロテロ Vincent M. Rotello
  4. Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications Fifth Edition
  5. セメントから超電導物質 絶縁体のはずなのに
  6. 使っては・合成してはイケナイ化合物 |第3回「有機合成実験テクニック」(リケラボコラボレーション)
  7. (–)-Vinigrol短工程不斉合成
  8. 第94回日本化学会付設展示会ケムステキャンペーン!Part II
  9. マクマリーカップリング McMurry Coupling
  10. 第134回―「脳神経系の理解を進める分析化学」Jonathan Sweeder教授

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2010年8月
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

注目情報

最新記事

カルボン酸β位のC–Hをベターに臭素化できる配位子さん!

カルボン酸のb位C(sp3)–H結合を直接臭素化できるイソキノリン配位子が開発された。イソキノリンに…

【12月開催】第十四回 マツモトファインケミカル技術セミナー   有機金属化合物 オルガチックスの性状、反応性とその用途

■セミナー概要当社ではチタン、ジルコニウム、アルミニウム、ケイ素等の有機金属化合物を“オルガチッ…

保護基の使用を最小限に抑えたペプチド伸長反応の開発

第584回のスポットライトリサーチは、東京大学大学院 薬学系研究科 有機合成化学教室(金井研究室)の…

【ナード研究所】新卒採用情報(2025年卒)

NARDでの業務は、「研究すること」。入社から、30代・40代・50代……

書類選考は3分で決まる!面接に進める人、進めない人

人事担当者は面接に進む人、進まない人をどう判断しているのか?転職活動中の方から、…

期待度⭘!サンドイッチ化合物の新顔「シクロセン」

π共役系配位子と金属が交互に配位しながら環を形成したサンドイッチ化合物の合成が達成された。嵩高い置換…

塩基が肝!シクロヘキセンのcis-1,3-カルボホウ素化反応

ニッケル触媒を用いたシクロヘキセンの位置および立体選択的なカルボホウ素化反応が開発された。用いる塩基…

中国へ行ってきました 西安・上海・北京編①

2015年(もう8年前ですね)、中国に講演旅行に行った際に記事を書きました(実は途中で断念し最後まで…

アゾ重合開始剤の特徴と選び方

ラジカル重合はビニルモノマーなどの重合に用いられる方法で、開始反応、成長反応、停止反応を素反応とする…

先端事例から深掘りする、マテリアルズ・インフォマティクスと計算科学の融合

開催日:2023/12/20 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP