[スポンサーリンク]

一般的な話題

学術変革領域研究(A) 「デジタル有機合成」発足とキックオフシンポジウムのお知らせ

[スポンサーリンク]

 

令和3年度より

学術変革領域研究(A)~デジタル化による高度精密有機合成の新展開~(略称:デジタル有機合成)

が発足しました!

学術変革(B)の糖化学ノックインと同様に、本化学ポータルサイトChem-Stationと、学術広報パッケージ契約を結びました。本アカウントを通じて、イベント情報や研究成果などをケムステで紹介していきたいと思います。

先日公開したばかりの領域HPや本領域のTwitterなどをご覧いただけると幸いです。

領域が目指すこと

有機合成の多様性に対応した独自のデジタル化プラットフォームを構築する

となります。以下背景から簡単に説明したいと思います。

日本の基幹産業の一翼を担う有機合成化学は、入手容易かつ安価な有機原料から、医薬、農薬、機能性材料などの超付加価値を有する高次複雑系分子を創成する、まさに現代の錬金術と言われるモノづくりを支える学術基盤であり、数多くのノーベル賞受賞が示すように、日本が世界を牽引してきました。

現在、有機合成化学の分野にもデジタル化という大きな変革の波が押し寄せている。日本の有機合成化学が世界をリードし続けるためには、有機合成に破壊的イノベーションを起こす、デジタル有機合成(実験科学と情報科学の異分野融合)の基盤を世界に先んじて構築し、他国の追随を許さない地位を築くことが重要かつ急務となっています。

本領域では、有機合成の多様性に対応した独自のデジタル化プラットフォームを構築するため、

①反応条件最適化、

②合成経路探索、

③高次複雑系分子設計

の3つの自動化システムを開発し、革新的な基礎反応の発掘や開発効率の超加速化(>10倍以上)を実証します。また、

④バッチ反応からフロー反応への変換法の開発

、そして

⑤自律的な条件最適化ユニットを組み込んだ自動合成システムを構築

し、多段階分子変換反応に展開することで、本プラットフォームの産業的実用性も示します。

本研究領域がデジタル有機合成の核となり、産学官が一体となった一大ムーブメントを創り出すことで、日本のモノづくり力向上と化学産業の継続的発展の土台づくりへの貢献を目指します。

領域の構成

領域代表者は、以下のビジョンで、本領域研究を強力に運営・推進し、本研究領域をわが国において確固たるものにし、他の追随を許さない地位を5年の研究期間内に築くために、以下の3班体制で研究を推進します。

A01班(AI支援による反応制御の深化)

A02班(AI支援による合成手法の深化)

A03班(有機合成を支援するAI 手法の深化)

計画班と公募班合わせて50以上の研究グループが加わった研究体制は、有機化学の多様性と機械学習に必要なデータ量をカバーするために必要だと考えており、将来的にこの体制で「革新反応と革新分子の創出を超加速化」を目指します。公募情報も近日HPに公開する予定なのでぜひ御覧ください。

キックオフシンポジウムにご参加を!

有機合成(実験科学)とデータサイエンス(情報科学)の異分野融合によって、有機合成に破壊的イノベーションを起こすことを目的とする、学術変革領域研究(A)「デジタル有機合成」が2021年9月に発足しました。
本キックオフミーティングでは、まず、本領域研究の概要を説明し、その後、A01班(AI支援による反応制御の深化)、A02班(AI支援による合成手法の深化)、A03班(有機合成を支援するAI 手法の深化)それぞれが取り組む研究内容、そして公募班にどのような研究を望むかについて紹介したいと思います。
また最後に、提言「化学・情報科の融合による新化学創成に向けて」を取りまとめた日本学術会議化学委員会化学企画分科会の副委員長であり、本領域研究の総括班評価者でもある茶谷直人先生にご講演いただきます。
本領域研究に興味を持たれている多くの方々の参加をお待ちしています。

「デジタル有機合成」領域代表 大嶋 孝志

日時:2021年12月6日(月)13:00-15:30
場所:オンライン開催(Zoomウェビナー)

13:00-13:10 領域代表挨拶、領域説明 大嶋孝志(九大院薬)
13:10-13:30 A01班説明「反応制御の深化」 大嶋孝志(九大院薬)
13:40-14:00 A02班説明「合成手法の深化」 菅誠治(岡山大院自然)
14:00-14:20 A03班説明「AI手法の深化」 宮尾知幸(奈良先端大・DSC)
14:20-14:35 質疑・応答
14:45-15:30 招待講演「結合活性化」 茶谷直人(阪大院工)

参加を希望される方は、以下のリンク(Googleフォーム)から11月30日(火)までにお申込ください。

参加登録はこちら!

後日、参加用のURLをご登録いただいたメールアドレスにお送りします。

関連リンク

関連記事

  1. CEMS Topical Meeting Online 超分子ポ…
  2. 計算化学:汎関数って何?
  3. 2020年の人気記事執筆者からのコメント全文を紹介
  4. (–)-Spirochensilide Aの不斉全合成
  5. 可視光で働く新しい光触媒を創出 -常識を覆す複合アニオンの新材料…
  6. 有機合成化学協会誌2017年11月号:オープンアクセス・英文号!…
  7. ReadCubeを使い倒す(1)~論文閲覧プロセスを全て完結させ…
  8. 新人化学者の失敗ランキング

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. グリコシル化反応を楽にする1位選択的”保護”反応
  2. ケムステタイムトラベル2011~忘れてはならない事~
  3. 特許庁「グリーン早期審査・早期審理」の試行開始
  4. ニーメントウスキー キノリン/キナゾリン合成 Niementowski Quinoline/Quinazoline Synthesis
  5. 有機化学命名法
  6. 第18回「化学の職人」を目指すー京都大学 笹森貴裕准教授
  7. 投票!2018年ノーベル化学賞は誰の手に!?
  8. ブートキャンプ
  9. 第149回―「ガスの貯蔵・分離・触媒変換に役立つ金属-有機構造体の開発」Banglin Chen教授
  10. 経営統合のJXTGホールディングスが始動

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2021年11月
1234567
891011121314
15161718192021
22232425262728
2930  

注目情報

注目情報

最新記事

表面酸化した銅ナノ粒子による低温焼結に成功~銀が主流のプリンテッドエレクトロニクスに、銅という選択肢を提示~

第393回のスポットライトリサーチは、北海道大学 大学院工学院 材料科学専攻 マテリアル設計講座 先…

高分子材料におけるマテリアルズ・インフォマティクスの活用とは?

 申込みはこちら■セミナー概要本動画は、20022年5月18日に開催されたセミナー「高分…

元素のふるさと図鑑

2022年も折り返しに差し掛かりました。2022年は皆さんにとってどんな年になり…

Q&A型ウェビナー カーボンニュートラル実現のためのマイクロ波プロセス 〜ケミカルリサイクル・乾燥・濃縮・焼成・剥離〜

<内容>本ウェビナーでは脱炭素化を実現するための手段として、マイクロ波プロセスをご紹介いたします…

カルボン酸、窒素をトスしてアミノ酸へ

カルボン酸誘導体の不斉アミノ化によりキラルα-アミノ酸の合成法が報告された。カルボン酸をヒドロキシル…

海洋シアノバクテリアから超強力な細胞増殖阻害物質を発見!

第 392回のスポットライトリサーチは、慶應義塾大学大学院 理工学研究科 博士後期課…

ポンコツ博士の海外奮闘録⑧〜博士,鍵反応を仕込む②〜

ポンコツシリーズ一覧国内編:1話・2話・3話国内外伝:1話・2話・留学TiPs海外編:1…

給電せずに電気化学反応を駆動 ~環境にやさしい手法として期待、極限環境での利用も~

第391回のスポットライトリサーチは、東京工業大学物質理工学院応用化学系 稲木研究室の岩井 優 (い…

GCにおける水素のキャリアガスとしての利用について

最近ヘリウムの深刻な供給不安により、GCで使うガスボンベの納期が未定となってしまい、ヘリウムが無くな…

タンパク質リン酸化による液-液相分離制御のしくみを解明 -細胞内非膜型オルガネラの構築原理の解明へ-

第 390 回のスポットライトリサーチは、東京大学大学院 理学系研究科 助教の 山崎…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP