[スポンサーリンク]

化学者のつぶやき

DNAに人工塩基対を組み入れる

[スポンサーリンク]

地球上の生命体が遺伝物質としてDNAを使っていること、またその遺伝情報はアデニン(A)、チミン(T)、グアニン(G)、シトシン(C)という僅か4種類の塩基でコードされることは、よく知られた事実です。

このシンプルな遺伝暗号が生み出す20種類のアミノ酸配列(タンパク質)が多種多様な生物機能を担っているわけで、生命の神秘には感動を覚えるほかありません。

しかし現代の化学者は飽くなき野望から、その神秘すら制御しようと考えています。

DNA/RNAに人工塩基対を組み込むアプローチはその一つです。

核酸機能の人工的拡張を目指して

人工塩基対(ここではATCGとは全く骨格の異なるものを指します)の開発研究は、生化学者Alexander Richが1962年に提唱した以下の仮説に端を発しています。

「DNAの塩基の種類を増やすことができれば、DNAの情報や機能を拡張できるはずだ」

仮に第5と第6の人工塩基対をDNAに導入することができれば、伝達パターン(3塩基対コドン)は従来の64通り(4x4x4)から216通り(6x6x6)にまで拡張されます。この拡張コドンに多数の人工アミノ酸を割り当てられれば、新しい人工タンパク質創製にも応用できるはず。またそのようなDNA・RNA自体にも、天然にはない新機能を持たせることができるはず。まさに応用性は無限です。

有機合成で作り上げた人工塩基対をDNAに組み込む研究自体は、実は多く知られています。

例えば東大理学部の塩谷光彦教授は、金属錯体キレートで塩基対を結びつけるアイデアの元、金属原子をDNAに精密配列させる手法を開発しました[1]。新たなナノマテリアル創製を見据えた化学として大変興味深い研究例です。

artificialBP_2.jpg

(画像は文献[1]より引用)

精度良い複製がとにかく大変!

とはいえ塩基対を組む分子を見つけること自体は、実はそこまで難しい話ではありません。人工塩基対のポテンシャルを最大限に活かしつつ、生命化学への応用を考えるならば、避けては通れない大きなハードルは他にあるのです。

それは人工DNAがポリメラーゼで精度高く転写(複製)されなくてはならないということです。

至極当たり前のようでありながら、これを実現しうる人工塩基の開発は並大抵の仕事ではありません。相性問題のために生命システムを上手く活用できないという、人工物に常につきまとう根源とも関わるからです。

生命システムへの応用を視野に入れるには、たいへんな高精度でお互いを見分ける選択性が求められます。なにせ天然DNAの転写エラーは僅かに1/10000 (エラー訂正機能を加味した複製過程ではなんと1/109!)という正確さです。

人工系でこれほどの選択性を為しとげる策はきわめて乏しいものでした。ただただ構造微調整という試行錯誤を繰り返す、泥臭い苦難の先にある世界といえるでしょう。

A-T・C-Gペアの構造を精査することで、「生命系が複製可能な塩基対となるには、どういう特性が重要か」という問題についての洞察がかねてより持たれています。これまでに開発されたPCR複製可能な塩基対の例を以下に示しておきます[2]。水素結合は必ずしも重要ではなく、塩基対同士の形状フィッティング、双極子モーメント、塩基対のスタッキングなどが重要な特性ということが分かってきました。

artificialBP_1.gif

そして長年にわたる格闘のすえ、ついにこの難問を解決した事例、すなわちポリメラーゼによる超高精度複製を行える人工DNA塩基対(Ds-Px:>99.9%/サイクル)が開発されるに至ったのです。

次回はこの応用例を一つ紹介してみたいと思います。

関連文献

  1.  “Programmable self-assembly of metal ions inside artificial DNA duplexes” Shionoya, M. et al. Nat. Nanotech. 2006, 1, 190. doi:10.1038/nnano.2006.141
  2. 「人工塩基対の分子設計」, 平尾一郎、TCIメール [PDF]

関連書籍

[amazonjs asin=”4062574721″ locale=”JP” title=”DNA (上)―二重らせんの発見からヒトゲノム計画まで (ブルーバックス)”][amazonjs asin=”0849314267″ locale=”JP” title=”Artificial DNA: Methods and Applications”]

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. Evonikとはどんな会社?
  2. Whitesides教授が語る「成果を伝えるための研究論文執筆法…
  3. “研究者”人生ゲーム
  4. 理研の研究者が考える“実験ロボット”の未来とは?
  5. ジアリールエテン縮環二量体の二閉環体の合成に成功
  6. 分子運動を世界最高速ムービーで捉える!
  7. 水から電子を取り出す実力派触媒の登場!
  8. アレーン類の直接的クロスカップリング

注目情報

ピックアップ記事

  1. フルオロホルムを用いた安価なトリフルオロメチル化反応の開発
  2. 酵素による光学分割 Enzymatic Optical Resolution
  3. フッ素のチカラで光学分割!?〜配向基はじめました〜
  4. いまさら聞けない、けど勉強したい 試薬の使い方  セミナー(全5回) ~DOJIN 5 は語りだす~
  5. 4つの性がある小鳥と超遺伝子
  6. NEC、デスクトップパソコンのデータバックアップが可能な有機ラジカル電池を開発
  7. ラジカルと有機金属の反応を駆使した第3級アルキル鈴木―宮浦型カップリング
  8. 第72回―「タンパク質と融合させた高分子材料」Heather Maynard教授
  9. 反応化学の活躍できる場を広げたい!【ケムステ×Hey!Labo 糖化学ノックインインタビュー②】
  10. ベンゼンスルホヒドロキサム酸を用いるアルデヒドとケトンの温和な条件下でのアセタール保護反応

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年2月
 12
3456789
10111213141516
17181920212223
2425262728  

注目情報

最新記事

7th Compound Challengeが開催されます!【エントリー〆切:2026年03月02日】 集え、”腕に覚えあり”の合成化学者!!

メルク株式会社より全世界の合成化学者と競い合うイベント、7th Compound Challenge…

乙卯研究所【急募】 有機合成化学分野(研究テーマは自由)の研究員募集

乙卯研究所とは乙卯研究所は、1915年の設立以来、広く薬学の研究を行うことを主要事業とし、その研…

大森 建 Ken OHMORI

大森 建(おおもり けん, 1969年 02月 12日–)は、日本の有機合成化学者。東京科学大学(I…

西川俊夫 Toshio NISHIKAWA

西川俊夫(にしかわ としお、1962年6月1日-)は、日本の有機化学者である。名古屋大学大学院生命農…

市川聡 Satoshi ICHIKAWA

市川 聡(Satoshi Ichikawa, 1971年9月28日-)は、日本の有機化学者・創薬化学…

非侵襲で使えるpH計で水溶液中のpHを測ってみた!

今回は、知っているようで知らない、なんとなく分かっているようで実は測定が難しい pH計(pHセンサー…

有馬温泉で鉄イオン水溶液について学んできた【化学者が行く温泉巡りの旅】

有馬温泉の金泉は、塩化物濃度と鉄濃度が日本の温泉の中で最も高い温泉で、黄褐色を呈する温泉です。この記…

HPLCをPATツールに変換!オンラインHPLCシステム:DirectInject-LC

これまでの自動サンプリング技術多くの製薬・化学メーカーはその生産性向上のため、有…

MEDCHEM NEWS 34-4 号「新しいモダリティとして注目を浴びる分解創薬」

日本薬学会 医薬化学部会の部会誌 MEDCHEM NEWS より、新たにオープン…

圧力に依存して還元反応が進行!~シクロファン構造を活用した新機能~

第686回のスポットライトリサーチは、北海道大学大学院理学研究院化学部門 有機化学第一研究室(鈴木孝…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP