[スポンサーリンク]

化学者のつぶやき

DNAに人工塩基対を組み入れる

[スポンサーリンク]

地球上の生命体が遺伝物質としてDNAを使っていること、またその遺伝情報はアデニン(A)、チミン(T)、グアニン(G)、シトシン(C)という僅か4種類の塩基でコードされることは、よく知られた事実です。

このシンプルな遺伝暗号が生み出す20種類のアミノ酸配列(タンパク質)が多種多様な生物機能を担っているわけで、生命の神秘には感動を覚えるほかありません。

しかし現代の化学者は飽くなき野望から、その神秘すら制御しようと考えています。

DNA/RNAに人工塩基対を組み込むアプローチはその一つです。

核酸機能の人工的拡張を目指して

人工塩基対(ここではATCGとは全く骨格の異なるものを指します)の開発研究は、生化学者Alexander Richが1962年に提唱した以下の仮説に端を発しています。

「DNAの塩基の種類を増やすことができれば、DNAの情報や機能を拡張できるはずだ」

仮に第5と第6の人工塩基対をDNAに導入することができれば、伝達パターン(3塩基対コドン)は従来の64通り(4x4x4)から216通り(6x6x6)にまで拡張されます。この拡張コドンに多数の人工アミノ酸を割り当てられれば、新しい人工タンパク質創製にも応用できるはず。またそのようなDNA・RNA自体にも、天然にはない新機能を持たせることができるはず。まさに応用性は無限です。

有機合成で作り上げた人工塩基対をDNAに組み込む研究自体は、実は多く知られています。

例えば東大理学部の塩谷光彦教授は、金属錯体キレートで塩基対を結びつけるアイデアの元、金属原子をDNAに精密配列させる手法を開発しました[1]。新たなナノマテリアル創製を見据えた化学として大変興味深い研究例です。

artificialBP_2.jpg

(画像は文献[1]より引用)

精度良い複製がとにかく大変!

とはいえ塩基対を組む分子を見つけること自体は、実はそこまで難しい話ではありません。人工塩基対のポテンシャルを最大限に活かしつつ、生命化学への応用を考えるならば、避けては通れない大きなハードルは他にあるのです。

それは人工DNAがポリメラーゼで精度高く転写(複製)されなくてはならないということです。

至極当たり前のようでありながら、これを実現しうる人工塩基の開発は並大抵の仕事ではありません。相性問題のために生命システムを上手く活用できないという、人工物に常につきまとう根源とも関わるからです。

生命システムへの応用を視野に入れるには、たいへんな高精度でお互いを見分ける選択性が求められます。なにせ天然DNAの転写エラーは僅かに1/10000 (エラー訂正機能を加味した複製過程ではなんと1/109!)という正確さです。

人工系でこれほどの選択性を為しとげる策はきわめて乏しいものでした。ただただ構造微調整という試行錯誤を繰り返す、泥臭い苦難の先にある世界といえるでしょう。

A-T・C-Gペアの構造を精査することで、「生命系が複製可能な塩基対となるには、どういう特性が重要か」という問題についての洞察がかねてより持たれています。これまでに開発されたPCR複製可能な塩基対の例を以下に示しておきます[2]。水素結合は必ずしも重要ではなく、塩基対同士の形状フィッティング、双極子モーメント、塩基対のスタッキングなどが重要な特性ということが分かってきました。

artificialBP_1.gif

そして長年にわたる格闘のすえ、ついにこの難問を解決した事例、すなわちポリメラーゼによる超高精度複製を行える人工DNA塩基対(Ds-Px:>99.9%/サイクル)が開発されるに至ったのです。

次回はこの応用例を一つ紹介してみたいと思います。

関連文献

  1.  “Programmable self-assembly of metal ions inside artificial DNA duplexes” Shionoya, M. et al. Nat. Nanotech. 2006, 1, 190. doi:10.1038/nnano.2006.141
  2. 「人工塩基対の分子設計」, 平尾一郎、TCIメール [PDF]

関連書籍

cosine

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。現在国立大学教員として勤務中。専門は有機合成化学、主に触媒開発研究。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 【速報】2010年ノーベル物理学賞に英の大学教授2人
  2. 食品衛生関係 ーChemical Times特集より
  3. アルケンのE/Zをわける
  4. SigmaAldrichフッ素化合物30%OFFキャンペーン
  5. 「日産化学」ってどんな会社?
  6. ノーベル化学賞メダルと科学者の仕事
  7. 荷電処理が一切不要な振動発電素子を創る~有機EL材料の新しい展開…
  8. 尿から薬?! ~意外な由来の医薬品~ あとがき

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ハワイ州で日焼け止め成分に規制
  2. 次世代シーケンサー活用術〜トップランナーの最新研究事例に学ぶ〜
  3. 金属原子のみでできたサンドイッチ
  4. 紹介会社を使った就活
  5. 化学反応を起こせる?インタラクティブな元素周期表
  6. アルキンの水和反応 Hydration of Alkyne
  7. 海外学会出張でeSIMを使ってみました
  8. 第八回 ユニークな触媒で鏡像体をつくり分けるー林民生教授
  9. C–S結合を切って芳香族を非芳香族へ
  10. 研究室でDIY! ~明るい棚を作ろう~

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

フルオロシランを用いたカップリング反応~ケイ素材料のリサイクルに向けて~

第282回のスポットライトリサーチは、大阪府立大学 大学院理学系研究科(松坂研究室)・山本大貴さんに…

第133回―「遺伝暗号リプログラミングと翻訳後修飾の研究」Jason Chin教授

第133回の海外化学者インタビューはジェイソン・チン教授です。ケンブリッジMRC分子生物学研究所のタ…

アメリカ大学院留学:卒業後の進路とインダストリー就活(3)

前回・前々回の記事では、アメリカのPhD取得後の進路について、一般的な進路やインダストリー就活の流れ…

リンだ!リンだ!ホスフィン触媒を用いたメチルアミノ化だ!

有機リン触媒とアリールボロン酸を用いたニトロメタンの還元的C–Nカップリング反応が報告された。本手法…

化学者のためのエレクトロニクス講座~次世代の通信技術編~

このシリーズでは、化学者のためのエレクトロニクス講座では半導体やその配線技術、フォトレジストやOLE…

第132回―「遷移金属触媒における超分子的アプローチ」Joost Reek教授

第132回の海外化学者インタビューはジュースト・リーク教授です。アムステルダム大学ファント・ホッフ分…

位置多様性・脱水素型クロスカップリング

第281回のスポットライトリサーチは、菅原真純 博士にお願いしました。菅原さんは理化学研究所…

エノールエーテルからα-三級ジアルキルエーテルをつくる

α-オキシラジカルを経るエノールエーテルのa位官能基化が開発された。種々のアルキルエノールエーテルと…

Chem-Station Twitter

PAGE TOP