[スポンサーリンク]

化学者のつぶやき

DNAに人工塩基対を組み入れる

[スポンサーリンク]

地球上の生命体が遺伝物質としてDNAを使っていること、またその遺伝情報はアデニン(A)、チミン(T)、グアニン(G)、シトシン(C)という僅か4種類の塩基でコードされることは、よく知られた事実です。

このシンプルな遺伝暗号が生み出す20種類のアミノ酸配列(タンパク質)が多種多様な生物機能を担っているわけで、生命の神秘には感動を覚えるほかありません。

しかし現代の化学者は飽くなき野望から、その神秘すら制御しようと考えています。

DNA/RNAに人工塩基対を組み込むアプローチはその一つです。

核酸機能の人工的拡張を目指して

人工塩基対(ここではATCGとは全く骨格の異なるものを指します)の開発研究は、生化学者Alexander Richが1962年に提唱した以下の仮説に端を発しています。

「DNAの塩基の種類を増やすことができれば、DNAの情報や機能を拡張できるはずだ」

仮に第5と第6の人工塩基対をDNAに導入することができれば、伝達パターン(3塩基対コドン)は従来の64通り(4x4x4)から216通り(6x6x6)にまで拡張されます。この拡張コドンに多数の人工アミノ酸を割り当てられれば、新しい人工タンパク質創製にも応用できるはず。またそのようなDNA・RNA自体にも、天然にはない新機能を持たせることができるはず。まさに応用性は無限です。

有機合成で作り上げた人工塩基対をDNAに組み込む研究自体は、実は多く知られています。

例えば東大理学部の塩谷光彦教授は、金属錯体キレートで塩基対を結びつけるアイデアの元、金属原子をDNAに精密配列させる手法を開発しました[1]。新たなナノマテリアル創製を見据えた化学として大変興味深い研究例です。

artificialBP_2.jpg

(画像は文献[1]より引用)

精度良い複製がとにかく大変!

とはいえ塩基対を組む分子を見つけること自体は、実はそこまで難しい話ではありません。人工塩基対のポテンシャルを最大限に活かしつつ、生命化学への応用を考えるならば、避けては通れない大きなハードルは他にあるのです。

それは人工DNAがポリメラーゼで精度高く転写(複製)されなくてはならないということです。

至極当たり前のようでありながら、これを実現しうる人工塩基の開発は並大抵の仕事ではありません。相性問題のために生命システムを上手く活用できないという、人工物に常につきまとう根源とも関わるからです。

生命システムへの応用を視野に入れるには、たいへんな高精度でお互いを見分ける選択性が求められます。なにせ天然DNAの転写エラーは僅かに1/10000 (エラー訂正機能を加味した複製過程ではなんと1/109!)という正確さです。

人工系でこれほどの選択性を為しとげる策はきわめて乏しいものでした。ただただ構造微調整という試行錯誤を繰り返す、泥臭い苦難の先にある世界といえるでしょう。

A-T・C-Gペアの構造を精査することで、「生命系が複製可能な塩基対となるには、どういう特性が重要か」という問題についての洞察がかねてより持たれています。これまでに開発されたPCR複製可能な塩基対の例を以下に示しておきます[2]。水素結合は必ずしも重要ではなく、塩基対同士の形状フィッティング、双極子モーメント、塩基対のスタッキングなどが重要な特性ということが分かってきました。

artificialBP_1.gif

そして長年にわたる格闘のすえ、ついにこの難問を解決した事例、すなわちポリメラーゼによる超高精度複製を行える人工DNA塩基対(Ds-Px:>99.9%/サイクル)が開発されるに至ったのです。

次回はこの応用例を一つ紹介してみたいと思います。

関連文献

  1.  “Programmable self-assembly of metal ions inside artificial DNA duplexes” Shionoya, M. et al. Nat. Nanotech. 2006, 1, 190. doi:10.1038/nnano.2006.141
  2. 「人工塩基対の分子設計」, 平尾一郎、TCIメール [PDF]

関連書籍

[amazonjs asin=”4062574721″ locale=”JP” title=”DNA (上)―二重らせんの発見からヒトゲノム計画まで (ブルーバックス)”][amazonjs asin=”0849314267″ locale=”JP” title=”Artificial DNA: Methods and Applications”]

Avatar photo

cosine

投稿者の記事一覧

博士(薬学)。Chem-Station副代表。国立大学教員→国研研究員にクラスチェンジ。専門は有機合成化学、触媒化学、医薬化学、ペプチド/タンパク質化学。
関心ある学問領域は三つ。すなわち、世界を創造する化学、世界を拡張させる情報科学、世界を世界たらしめる認知科学。
素晴らしければ何でも良い。どうでも良いことは心底どうでも良い。興味・趣味は様々だが、そのほとんどがメジャー地位を獲得してなさそうなのは仕様。

関連記事

  1. 【悲報】HGS 分子構造模型 入手不能に
  2. で、その研究はなんの役に立つの?
  3. ルテニウム触媒を用いたcis選択的開環メタセシス重合
  4. シグマ アルドリッチ構造式カタログの機能がアップグレードしたらし…
  5. 半導体領域におけるマテリアルズ・インフォマティクスの活用-レジス…
  6. 高分子を”見る” その1
  7. 高校生・学部生必見?!大学学術ランキング!!
  8. 超高圧合成、添加剤が選択的物質合成の決め手に -電池材料等への応…

注目情報

ピックアップ記事

  1. 「サガミオリジナル001」、今月から販売再開 相模ゴム
  2. カーボンナノチューブの毒性を和らげる長さ
  3. これならわかるNMR/二次元NMR
  4. 「引っ張って」光学分割
  5. 大学院生になっても宿題に追われるってどないなんだが?【アメリカでPh.D.を取る–コースワークの巻–】
  6. マクマリーカップリング McMurry Coupling
  7. 第10回日本化学連合シンポジウム 化学コミュニケーション賞2016 表彰式
  8. ノーベル賞親子2代受賞、コーンバーグさんが東大で講演
  9. トクヤマが参入へ/燃料電池部材市場
  10. 酸素ボンベ爆発、男性死亡 

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2014年2月
 12
3456789
10111213141516
17181920212223
2425262728  

注目情報

最新記事

マティアス・クリストマン Mathias Christmann

マティアス・クリストマン(Mathias Christmann, 1972年10…

ケムステイブニングミキサー2025に参加しよう!

化学の研究者が1年に一度、一斉に集まる日本化学会春季年会。第105回となる今年は、3月26日(水…

有機合成化学協会誌2025年1月号:完全キャップ化メッセンジャーRNA・COVID-19経口治療薬・発光機能分子・感圧化学センサー・キュバンScaffold Editing

有機合成化学協会が発行する有機合成化学協会誌、2025年1月号がオンライン公開されています。…

配位子が酸化??触媒サイクルに参加!!

C(sp3)–Hヒドロキシ化に効果的に働く、ヘテロレプティックなルテニウム(II)触媒が報告された。…

精密質量計算の盲点:不正確なデータ提出を防ぐために

ご存じの通り、近年では化学の世界でもデータ駆動アプローチが重要視されています。高精度質量分析(HRM…

第71回「分子制御で楽しく固体化学を開拓する」林正太郎教授

第71回目の研究者インタビューです! 今回は第51回ケムステVシンポ「光化学最前線2025」の講演者…

第70回「ケイ素はなぜ生体組織に必要なのか?」城﨑由紀准教授

第70回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第69回「見えないものを見えるようにする」野々山貴行准教授

第69回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

第68回「表面・界面の科学からバイオセラミックスの未来に輝きを」多賀谷 基博 准教授

第68回目の研究者インタビューです! 今回は第52回ケムステVシンポ「生体関連セラミックス科学が切り…

配座制御が鍵!(–)-Rauvomine Bの全合成

シクロプロパン環をもつインドールアルカロイド(–)-rauvomine Bの初の全合成が達成された。…

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP