[スポンサーリンク]

一般的な話題

“マイクロプラスチック”が海をただよう その1

カモメの胃袋から出てきたプラスチック類(一羽から、ではありませんが) 引用 → 

 趣味で色々調べてるうちにどうしても書いておきたいことが出てきました。

Tshozoです。数年前に起きたオリンパス社不祥事を扱った「解任」(マイケル・ウッドフォード氏 著)、面白いですよ→  。企業だけでなく大学など、組織に属される方なら是非お読みください。いろんなところで似た事例が絶賛進行中なのが気にかかりますが。

昔から色々な公害問題を調べている筆者ですが、オーストラリア シドニー近郊でも静かに進行中ということが明らかになった「ある案件」につきひとつ記事を書いてみます。

その案件というのはこちら → 。 「オーストラリア近郊に、マイクロプラスチックが高濃度で存在する」というものです。以前からTVをはじめ色々なメディアに採り上げられているので何をいまさら、という気はしますが公害問題の歴史と絡めて採り上げているものはあまり無い気がしましたので今回書いてみることにしました。どうかお付き合いください。

 

はじめに

プラスチックとは何か? 一般的な定義としては「石油類から人工的に合成された高分子量体」と言えます。さっぱりわかんないっすね。要は石油をゴニョゴニョして作られた便利な固形材料ってことdeath。最近では石油以外に植物類からも合成されるバイオプラスチックなどもありますから、今回のはなしにはそれも含めることにしましょう。

こういうもんです 引用 → 

背景

生産されたプラスチック類は人間生活の中での役目を終えた後、一部は焼却され、一部は再利用されて循環しますが、その一部はいずれのサイクルにも乗らず、「ゴミ」として残留します。さらにその一部は海洋へ漕ぎ出しますが、これらはMarine LitterまたはOcean Debrisと呼ばれ、いわゆる海洋ゴミとされています。

PW_01.png人間生活内のプラスチックのウロウロ具合概念図
こちら引用して作者が改編 → 

ことばの定義

さらに、上記の中でマイクロプラスチックとは何か。国際規格のような明確な定義はなさそうなのですが、文献類を漁った結果、「形状に関わらず直径が約5~10mm以下、0.1mm以上のプラスチック」のもようです。ここで「形状に関わらず」と書いたのは、球状やら糸状やら針状やら、様々な形状が存在するためです。

PW_02.pngマイクロプラスチックの例 引用 → 
数字はそれぞれのおよその直径 : a:赤ファイバー70um, b:青粒子, c: 青ファイバー100um
d:白フィルム1.5cm, e:乳白色粒子0.4mm, f:乳白色粒子
原論文:Frederik Noren “Small plastic particles in Coastal Swedish waters”, KIMO Sweden, 2007″

発生源

そりゃ、人間活動です。まず、「プラスチック」の海洋で見つかる廃棄物の頻度はこちら →  の資料で取り上げられており、「包装類」がトップランクになっています。

これに対しマイクロプラスチックの場合には大きく2つの分類、即ち①原料そのまま(化粧品に含まれる研磨剤やプラスチックの原料形態であるペレット粒)と、②劣化後プラスチック(大きなプラスチックから劣化によって剥がれた針状の細かい破片など)になります。後者には実は生分解性プラスチックも含まれます。生分解性プラスチックといえどもその劣化速度は遅く、どうしてもこういった微小片が存在してしまうわけで。上の図でいうと①にはe,f、②にはa,b,c,dが該当します。下は②の例ですね。

 PW_09.png

洗顔料に含まれる「スクラブ(研磨剤)」としてのマイクロプラスチック 引用 → 

PW_05_re.pngポリプロピレン、ポリエチレンの耐光(候)性試験後の表面状態 引用(一部追記) → 
こういうクラックから剥がれ落ちた微小破片も「マイクロプラスチック」となりうる

 またこのマイクロプラスチック、総量がどのくらい海洋中(世界中)に存在するのか、正確な試算が出来ていないようなのです。現在は欧州やイギリス、オーストラリアなどの沿岸部の国が積極的な活動を開始しており、実状がようやく把握できているようですが世界中の国家でそうしたデータを取って集計して実存在量を推定することを考えると、凄まじい労力と費用が必要になります。おそらく海洋研究者間ではそうした動きはあるのかもしれませんが(欧州・豪州にはありました →    など)、今回は国際的な枠組みを見つけるには至りませんでした。

 

悪影響の詳細-その1

まず下記の写真をご覧ください。感情に訴えかけるつもりはないのですが、色々と悲惨です。これはまずマクロプラスチックのケース。カメがクラゲと間違えてポリ袋を飲み込み、腹に詰まって衰弱死するケースがあることは皆様もご存知だと思います。

PW_06.png“Entanglement=「絡み付き」 / Ingestion=「飲み込み」”という意味です
こちらより引用 → 

 そしてこっちがマイクロプラスチックのケース。ミジンコの中に生分解性プラスチックの破片があった、という話をどっかのニュースで聞いたことがあるのですが、魚の寄生虫の腹ん中にも存在するというのは驚きです。

PW_07.png魚の胃袋を解体して出てきたプラスチック類が写真左下に見える
右側はニシンの腹の中に居る線虫の、さらにその中に存在したマイクロプラスチックの例
こちらより一部改編して引用(同上) → 

 ニワトリが食べる砂と同じように、喰ってウンコになって出てくるとか、食べ物を潰すのに使うとかなら別にいいのですが、どうもそうではなさそうなのです。 まず、一気に食うと腹の管が詰まる→閉塞→死亡。ポリスチレンの小破片とか、そういうのが固まって海中に分散してたら魚は間違って喰いそうですよね。

で、一気に食わなくても微小な寄生虫とかが食う→腹に詰まる→死亡。その他、まだ確実ではないですが、光合成機能が低下する(Hindered algal photosynthesis)とか、浮腫ができる(Granulocytoma formation)とかの悪影響も懸念されているようです。

長くなりそうなので今回はここまで。実は悪影響はこうした物理的なものだけではないのです。

 

参考文献

元記事 ”Tiny plastic dwellers have big impact on our oceans” → 

“Algalita Marine Research Institute” → ●
UNEP報告書 2011年度 ”Plastic debris in the ocean” → 
Maria Gorycka “ENVIRONMENTAL RISKS OF MICROPLASTICS” → 
“Unrecognised Pollutant Risks to the Great Barrier Reef” →
“” → 
“Macroplastics, microplastics and environmental impacts” Amsterdam University → 
“Concentrations of PCBs in beached plastic pellets” Teuten et al. (2009) → 
“Microplastics in Facial Exfoliating Cleansers” Michelle Chang (2013)→ 

The following two tabs change content below.
Tshozo

Tshozo

メーカ開発経験者(電気)。56歳。コンピュータを電算機と呼ぶ程度の老人。クラウジウスの論文から化学の世界に入る。ショーペンハウアーが嫌い。

関連記事

  1. あなたの合成ルートは理想的?
  2. 好奇心の使い方 Whitesides教授のエッセイより
  3. 進撃のタイプウェル
  4. シリリウムカルボラン触媒を用いる脱フッ素水素化
  5. 第45回BMSコンファレンス参加者募集
  6. サーモサイエンティフィック「Exactive Plus」: 誰で…
  7. 医薬品への新しい合成ルートの開拓 〜協働的な触媒作用を活用〜
  8. 高機能・高性能シリコーン材料創製の鍵となるシロキサン結合のワンポ…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. アレーン類の直接的クロスカップリング
  2. 「サイエンスアワードエレクトロケミストリー賞」が気になったので調べてみた
  3. クロム光レドックス触媒を有機合成へ応用する
  4. C70の中に水分子を閉じ込める
  5. 辻・ウィルキンソン 脱カルボニル化反応 Tsuji-Wilkinson Decarbonylation
  6. 合成とノーベル化学賞
  7. ディーン・トースト F. Dean Toste
  8. ボーディペプチド合成 Bode Peptide Synthesis
  9. アルツハイマー病・ワクチン開発相次ぐ、副作用回避へ知恵絞る
  10. 次世代分離膜の開発、実用化動向と用途展開 完全網羅セミナー

関連商品

注目情報

注目情報

最新記事

二重芳香族性を示す化合物の合成に成功!

第170回目のスポットライトリサーチは、埼玉大学大学院理工学研究科・古川 俊輔 助教にお願いしました…

専門家要らず?AIによる圧倒的高速なスペクトル解釈

第169回目のスポットライトリサーチは、東京大学大学院工学系研究科博士課程・清原慎さんにお願いしまし…

日本プロセス化学会2018ウインターシンポジウム

ご案内日本プロセス化学会(JSPC)が年2回主催するシンポジウムは、最新のプロセス化学の知識を習…

フラーレンの“籠”でH2O2を運ぶ

過酸化水素分子内包フラーレン誘導体を、大気圧・室温条件下で合成する方法が開発された。分子内包フラ…

北エステル化反応 Kita Esterification

概要ルテニウム触媒存在下、エチニルエチルエーテル試薬を脱水剤として用い、カルボン酸とアルコールか…

一人二役のフタルイミドが位置までも制御する

N-ヒドロキシフタルイミドを用いる逆マルコフニコフ型のヒドロアミノ化が報告された。遷移金属触媒および…

PAGE TOP