[スポンサーリンク]

ケムステニュース

位相情報を含んだ波動関数の可視化に成功

[スポンサーリンク]

アイキャッチ画像: “Detection of the shape of an electronic wave function with a six-fold symmetry” by NRC Ottawa 1

早稲田大学理工学術院の新倉弘倫(にいくらひろみち)教授は、カナダ国立研究機構 (National Research Council of Canada)、独マックス・ボルン研究所(Max Born Institute)と共同で、アト秒レーザー(高次高調波)によるネオン原子の光イオン化過程で生成した、ほぼ純粋なf-軌道電子(電子波動関数)の密度分布と、その位相を分けた波動関数に相当するイメージの直接測定に成功しました。またさらに、イオン化した電子波束がどのような位相と振幅を持つ波動関数から成っているかを同定する方法を開発しました。(引用:早稲田大学 2017年6月16日)2

早稲田大学教授の研究チームが、アト秒パルスレーザーにより放出された光電子の波動関数を直接可視化することに成功しました3。これは量子力学の発展に大きく寄与するものであるとともに、アト秒物理学(Attosecond Physics)が飛躍的な進歩を遂げていることを表します。

早稲田大学の公式サイトにて研究内容については詳しく記述されています2。アト秒物理学は近年発展が目覚ましい分野です。これからは、アト秒物理学技術を利用した化学の研究が行われていくのでしょうか。

研究背景

波動関数とは

アイザック・ニュートンらが構築した古典力学は、物質の挙動を記述する物理学の基礎学問でした。しかしながら19世紀末頃から、古典力学では説明することのできない、原子や電子に関連した実験結果が報告され、それらミクロな物質も全て含めた物質の挙動を記述する基礎学問が必要となりました。それが、エルヴィン・シュレーディンガーやマックス・ボルンらによって構築された量子力学です。

量子力学はシュレディンガー方程式を基礎方程式として展開されます。対象とする物質に関する情報は、その方程式の解である、ψ に内包されています。つまり、化学反応がどのように生じるのか、物質がどのような性質を有しているのか、などを根源的に理解するためには、それらの発生源となっている主な物質である電子の、 ψ について知ることが必要となります。 この  ψ が波動関数です。

シュレディンガー方程式(関数形式)

波動関数は複素関数であり、主に振幅と位相によって特徴付けられます。シュレディンガー方程式から関数を求め、その形状などを描像することは理論上可能でしたが、実験によって実際の波動関数を直接測定することは非常に困難です。また、波動関数そのものをどう解釈するべきであるのかという理解を助ける糸口という意味でも、直接的な測定は長らく求められ続けています4

アト秒物理学とは

アト(atto)とは、キロやミリ、ナノなどと同じ接頭辞の1つであり、10のマイナス18乗を表します。すなわちアト秒とは、10のマイナス18乗秒となります。小さな値すぎてなかなか想像ができないですね。

地球誕生から現在まで46億年と言われていますが、それを秒に直すと0.15 ×「10の18乗」秒です。もし46億年を1秒に縮めたとしたら、0.15秒が1アト秒になります。人間のまばたきは約0.3秒と言われていますので、人が1回まばたきしたとして、地球のこれまでの長い歴史を1秒と見なすと、2アト秒に相当します。アト秒の世界を観測することがいかにすごいかが分かりますね。(引用:THE PAGE 2016年10月1日)5

太陽系の一部として地球が生まれてから現代に至るまでを1秒とすると、1アト秒は私達が瞬きをする時間の半分程度となるわけです。どれほどに短い時間であるかイメージが湧くと思います。

アト秒物理学とは、そのような短い時間に生じる物理現象を取り扱う学問であり、2001年にアト秒レーザー発生が報告されてから急速に発展してきました。アト秒の世界では、原子や分子の振動などさえ遅すぎます。もっと質量の小さな電子などの運動そのものが観測できるのです。

関連図書

参考文献・関連記事

  1. Interplay of light and matter – A “perfect” attosecond experiment” | idw
  2. アト秒レーザーで位相を分けた電子波動関数の直接イメージングに成功 新規なアト電子テクノロジーの開発に期待』 | 早稲田大学ニュース
  3. “Coherent imaging of an attosecond electron wave packet”, D. M. Villeneuve, Paul Hockett, M. J. J. Vrakking, Hiromichi Niikura, Science 2017, 356, 6343, DOI: 10.1126/science.aam8393
  4. “Direct measurement of the quantum wavefunction”, Jeff S. Lundeen, Brandon Sutherland, Aabid Patel, Corey Stewart & Charles Bamber, Nature 2011, 474, 188-191, DOI: 10.1038/nature10120
  5. 2016年「物理学賞」は誰の手に? 日本科学未来館がノーベル賞予想』 | THE PAGE

関連リンク

Eine

投稿者の記事一覧

音楽ゲームが好き。ナノメートルの世界で分子や電子の気持ちを考える日々

関連記事

  1. 光触媒で抗菌・消臭 医療用制服、商品化へ 豊田通商 万博採用を機…
  2. 有機ELディスプレイ材料市場について調査結果を発表
  3. 新しい糖尿病治療薬認可へ~人体機能高めるタイプから吸入式まで
  4. 「薬学の父」長井博士、半生を映画化へ
  5. 三井化学岩国大竹工場の設備が未来技術遺産に登録
  6. 日本触媒で爆発事故
  7. 2017卒大学生就職企業人気ランキングが発表
  8. 最少の実験回数で高い予測精度を与える汎用的AI技術を開発 ~材料…

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. 米メルク、シェリング・プラウを4兆円で買収
  2. 創薬に求められる構造~sp3炭素の重要性~
  3. 新課程視覚でとらえるフォトサイエンス化学図録
  4. 小説『ラブ・ケミストリー』聖地巡礼してきた
  5. 化学は切手と縁が深い
  6. ポリアクリル酸ナトリウム Sodium polyacrylate
  7. 優れた研究者は優れた指導者
  8. ホウ素化反応の常識を覆し分岐型アルケンの製造工程を大幅短縮
  9. 米国へ講演旅行にいってきました:Part I
  10. バトラコトキシン (batrachotoxin)

関連商品

ケムステYoutube

ケムステSlack

月別アーカイブ

2017年6月
 1234
567891011
12131415161718
19202122232425
2627282930  

注目情報

注目情報

最新記事

セレンディピティ:思いがけない発見・発明のドラマ

hodaです。今回は1993年に刊行され、2022年7月に文庫化された書籍について書いていき…

第29回 ケムステVシンポ「論文を書こう!そして…」を開催します

コロナ禍による規制も少しずつ緩和されてきて、逆にオンライン会議が逆に少し恋しくなっている今日この頃か…

マテリアルズ・インフォマティクス活用検討・テーマ発掘の進め方 -社内促進でつまずやすいポイントや解決策を解説-

開催日:2022/08/24 申込みはこちら■開催概要近年、少子高齢化、働き手の不足の影…

高分子固体電解質をAIで自動設計

第406回のスポットライトリサーチは、早稲田大学 先進理工学部 応用化学科 小柳津・須賀研究室の畠山…

スクショの友 Snagit

スクリーンショット(スクショ)は、手軽に画像や図をコピーすることができ、資料作成などにおいて便利な機…

第28回Vシンポ「電子顕微鏡で分子を見る!」を開催します!

こんにちは、今回第28回Vシンポの運営&司会を務めさせていただくMacyです、よろしくお願い…

量子アルゴリズム国際ハッカソンQPARC Challengeで、で京都大学の学生チームが優勝!!

そこかしこで「量子コンピュータ」という言葉を聞くようになった昨今ですが、実際に何がどこまでできるのか…

Nature主催の動画コンペ「Science in Shorts」に応募してみました

以前のケムステ記事で、Springer Nature社が独・メルク社と共同で、動画コンペ「Scien…

クオラムセンシング阻害活性を有する新規アゾキシアルケン化合物の発見―薬剤耐性菌の出現を抑える感染症治療薬への応用に期待―

第405回のスポットライトリサーチは、広島大学大学院統合生命科学研究科 生物工学プログラム 細胞機能…

【著者インタビュー動画あり!】有機化学1000本ノック スペクトル解析編

今年4月に発売された書籍で、発売記念著者インタビュー動画も発売前に撮影したのですが、書籍の到…

Chem-Station Twitter

実験器具・用品を試してみたシリーズ

スポットライトリサーチムービー

PAGE TOP