[スポンサーリンク]

ケムステニュース

位相情報を含んだ波動関数の可視化に成功

[スポンサーリンク]

アイキャッチ画像: “Detection of the shape of an electronic wave function with a six-fold symmetry” by NRC Ottawa 1

早稲田大学理工学術院の新倉弘倫(にいくらひろみち)教授は、カナダ国立研究機構 (National Research Council of Canada)、独マックス・ボルン研究所(Max Born Institute)と共同で、アト秒レーザー(高次高調波)によるネオン原子の光イオン化過程で生成した、ほぼ純粋なf-軌道電子(電子波動関数)の密度分布と、その位相を分けた波動関数に相当するイメージの直接測定に成功しました。またさらに、イオン化した電子波束がどのような位相と振幅を持つ波動関数から成っているかを同定する方法を開発しました。(引用:早稲田大学 2017年6月16日)2

早稲田大学教授の研究チームが、アト秒パルスレーザーにより放出された光電子の波動関数を直接可視化することに成功しました3。これは量子力学の発展に大きく寄与するものであるとともに、アト秒物理学(Attosecond Physics)が飛躍的な進歩を遂げていることを表します。

早稲田大学の公式サイトにて研究内容については詳しく記述されています2。アト秒物理学は近年発展が目覚ましい分野です。これからは、アト秒物理学技術を利用した化学の研究が行われていくのでしょうか。

研究背景

波動関数とは

アイザック・ニュートンらが構築した古典力学は、物質の挙動を記述する物理学の基礎学問でした。しかしながら19世紀末頃から、古典力学では説明することのできない、原子や電子に関連した実験結果が報告され、それらミクロな物質も全て含めた物質の挙動を記述する基礎学問が必要となりました。それが、エルヴィン・シュレーディンガーやマックス・ボルンらによって構築された量子力学です。

量子力学はシュレディンガー方程式を基礎方程式として展開されます。対象とする物質に関する情報は、その方程式の解である、ψ に内包されています。つまり、化学反応がどのように生じるのか、物質がどのような性質を有しているのか、などを根源的に理解するためには、それらの発生源となっている主な物質である電子の、 ψ について知ることが必要となります。 この  ψ が波動関数です。

シュレディンガー方程式(関数形式)

波動関数は複素関数であり、主に振幅と位相によって特徴付けられます。シュレディンガー方程式から関数を求め、その形状などを描像することは理論上可能でしたが、実験によって実際の波動関数を直接測定することは非常に困難です。また、波動関数そのものをどう解釈するべきであるのかという理解を助ける糸口という意味でも、直接的な測定は長らく求められ続けています4

アト秒物理学とは

アト(atto)とは、キロやミリ、ナノなどと同じ接頭辞の1つであり、10のマイナス18乗を表します。すなわちアト秒とは、10のマイナス18乗秒となります。小さな値すぎてなかなか想像ができないですね。

地球誕生から現在まで46億年と言われていますが、それを秒に直すと0.15 ×「10の18乗」秒です。もし46億年を1秒に縮めたとしたら、0.15秒が1アト秒になります。人間のまばたきは約0.3秒と言われていますので、人が1回まばたきしたとして、地球のこれまでの長い歴史を1秒と見なすと、2アト秒に相当します。アト秒の世界を観測することがいかにすごいかが分かりますね。(引用:THE PAGE 2016年10月1日)5

太陽系の一部として地球が生まれてから現代に至るまでを1秒とすると、1アト秒は私達が瞬きをする時間の半分程度となるわけです。どれほどに短い時間であるかイメージが湧くと思います。

アト秒物理学とは、そのような短い時間に生じる物理現象を取り扱う学問であり、2001年にアト秒レーザー発生が報告されてから急速に発展してきました。アト秒の世界では、原子や分子の振動などさえ遅すぎます。もっと質量の小さな電子などの運動そのものが観測できるのです。

関連図書

参考文献・関連記事

  1. Interplay of light and matter – A “perfect” attosecond experiment” | idw
  2. アト秒レーザーで位相を分けた電子波動関数の直接イメージングに成功 新規なアト電子テクノロジーの開発に期待』 | 早稲田大学ニュース
  3. “Coherent imaging of an attosecond electron wave packet”, D. M. Villeneuve, Paul Hockett, M. J. J. Vrakking, Hiromichi Niikura, Science 2017, 356, 6343, DOI: 10.1126/science.aam8393
  4. “Direct measurement of the quantum wavefunction”, Jeff S. Lundeen, Brandon Sutherland, Aabid Patel, Corey Stewart & Charles Bamber, Nature 2011, 474, 188-191, DOI: 10.1038/nature10120
  5. 2016年「物理学賞」は誰の手に? 日本科学未来館がノーベル賞予想』 | THE PAGE

関連リンク

Eine

Eine

投稿者の記事一覧

音楽ゲームが好き。ナノメートルの世界で分子や電子の気持ちを考える日々

関連記事

  1. 東芝やキヤノンが優位、微細加工技術の「ナノインプリント」
  2. 全薬工業とゼファーマ、外用抗真菌薬「ラノコナゾール」配合の水虫治…
  3. H-1B ビザの取得が難しくなる!?
  4. 夏:今年もスズメバチ防護服の製造ピーク
  5. 米メルク、「バイオックス」回収で第2・四半期は減収減益
  6. 分子情報・バイオ2研究センター 九大開設
  7. 日本発元素がついに周期表に!!「原子番号113番」の命名権が理研…
  8. ユニバーサル・フェーズセパレーター発売

コメント、感想はこちらへ

注目情報

ピックアップ記事

  1. ナフサ、25年ぶり高値・4―6月国産価格
  2. 福井県内において一酸化炭素中毒事故(軽症2名)が発生
  3. 有機合成の落とし穴
  4. エッシェンモーザー・タナベ開裂反応 Eschenmoser-Tanabe Fragmentation
  5. 住友チタニウム、スポンジチタン生産能力を3割増強
  6. 第94回―「化学ジャーナルの編集長として」Hilary Crichton博士
  7. 無限の可能性を合成コンセプトで絞り込むーリアノドールの全合成ー
  8. リアル『ドライ・ライト』? ナノチューブを用いた新しい蓄熱分子の設計-後編
  9. 【インドCLIP】製薬3社 抗エイズ薬後発品で米から認可
  10. 【書籍】「世界一美しい数学塗り絵」~宇宙の紋様~

関連商品

ケムステYoutube

ケムステSlack

注目情報

注目情報

最新記事

【ケムステSlackに訊いてみた⑤】再現性が取れなくなった!どうしてる?

日本初のオープン化学コミュニティ・ケムステSlackの質問チャンネルに流れてきたQ&Aの紹介…

但馬 敬介 Keisuke TAJIMA

但馬 敬介(TAJIMA Keisuke, 1974年7月23日 – )は、日本の高分子化学者である…

Carl Boschの人生 その10

Tshozoです。このシリーズも10回を迎えましたが筆者の人生は進んでいません。先日気づいた…

「つける」と「はがす」の新技術|分子接合と表面制御 R3

開講期間令和3(2021)年  9月8日(水)、9日(木)(計2日間)※状況により、we…

第19回ケムステVシンポ「化学者だって起業するっつーの」を開催します!

少し前に化学者のつぶやきからこのような記事が出ました:【ケムステSlackに訊いて見た④】化学系学生…

10種類のスパチュラを試してみた

大好評、「試してみた」シリーズの第6弾。今回は試薬の秤量にか欠かせない、…

第48回「分子の光応答に基づく新現象・新機能の創出」森本 正和 教授

久々の研究者へのインタビューです。第48回は、立教大学の森本正和先生にお願いいたしました。第17回ケ…

畠山琢次 Takuji Hatakeyama

畠山琢次 (はたけやま たくじ)は、日本の化学者である。専門は有機合成化学,材料化学。2021年現在…

Chem-Station Twitter

PAGE TOP